首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   371篇
  免费   2篇
  国内免费   32篇
化学   180篇
力学   78篇
数学   7篇
物理学   140篇
  2023年   5篇
  2022年   1篇
  2021年   6篇
  2020年   8篇
  2019年   4篇
  2018年   3篇
  2017年   12篇
  2016年   11篇
  2015年   18篇
  2014年   9篇
  2013年   18篇
  2012年   9篇
  2011年   31篇
  2010年   22篇
  2009年   43篇
  2008年   26篇
  2007年   34篇
  2006年   35篇
  2005年   19篇
  2004年   19篇
  2003年   18篇
  2002年   15篇
  2001年   2篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有405条查询结果,搜索用时 31 毫秒
21.
提出一种基于太赫兹无损检测的多特征参数神经网络分析技术,用于分析耐高温复合材料的粘贴质量无损检测.采用抽片式方法设计了一种耐高温复合材料的脱粘缺陷样品,抽片厚度为0.1mm.采用太赫兹时域光谱无损检测技术对耐高温复合材料的多层脱粘缺陷进行了检测试验研究,对比了上下脱粘缺陷所对应的太赫兹时域波形及频谱信息的异同,针对性地建立了耐高温复合材料粘贴质量的上层脱粘参数、下层脱粘参数、频域吸收质心参数等多特征参数,将特征参数进行优化作为反向传播神经网络的输入并对其进行上下脱粘分类识别.通过对反向传播神经网络的训练测试,实现了耐高温复合材料上层脱粘0.1mm、下层脱粘0.1mm的脱粘缺陷的识别.  相似文献   
22.
We present an experiment on the morphology and dynamics of a crack front propagating at the interface between an elastomer and a glass slide patterned with a prescribed distribution of defects. Regimes of high and low pinning strength are explored by changing the fracture energy contrast of the defects. We first analyze the roughness of crack fronts by measuring their typical amplitude in real and Fourier space. Irrespective of the pinning regime, no well defined self-affine behavior is found which may be explained by the emergence of an intermediate lengthscale between the defect size and the sample size. Then, we show that the dynamics at high fracture energy contrast results in rapid jumps alternating with periods of arrest. The distributions of speeds, displacements and waiting times are found to have an exponential decay which is directly related to the distribution of distances between defects along the direction of propagation.  相似文献   
23.
This study investigates the effect of annealing temperature on the Si0.8Ge0.2 epitaxial layers. The Si0.8Ge0.2 epitaxial layers were deposited by using ultrahigh vacuum chemical vapor deposition (UHVCVD) with different annealing temperatures (400-1000 °C). Various measurement technologies, including high-resolution X-ray diffraction (HRXRD), atomic force microscopy (AFM) and interfacial adhesion tester, were used to characterize the materials properties of the SiGe epilayers. The experimental results showed that the SiGe epilayers gradually reduced lattice-mismatch to the underlying substrate as annealing temperature increased (from 400 to 800 °C), which resulted from a high temperature enhancing interdiffusion between the epilayers and the underlying substrate. In addition, the average grain size of the SiGe films increased from 53.3 to 58 nm with increasing annealing temperature. The surface roughness in thin film annealed at 800 °C was 0.46 nm. Moreover, the interfacial adhesion strength increased from 476 ± 9 to 578 ± 12 kg/cm2 with increasing the annealing temperature.  相似文献   
24.
Elastocapillary phenomena involving elastic deformation of solid structures coupled with capillary effects of liquid droplets/films can be observed in a diversity of fields,e.g.,biology and microelectromechanical systems(MEMS).Understanding the physical mechanisms underlying these phenomena is of great interest for the design of new materials and devices by utilizing the effects of surface tension at micro and nano scales.In this paper,some recent developments in the investigations on elastocapillary phenomena are briefly reviewed.Especially,we consider the deformation,adhesion,self-assembly,buckling and wrinkling of materials and devices induced by surface tensions or capillary forces.The main attention is paid to the experimental results of these phenomena and the theoretical analysis methods based on continuum mechanics.Additionally,the applications of these studies in the fields of MEMS,micro/nanometrology,and biomimetic design of advanced materials and devices are discussed.  相似文献   
25.
For accurately predicted adhesion laws of fibrillar structures contribute to the rational design of high-performance biomimetic adhesives, an adhesion model is proposed to study the directional adhesion behavior of an extensible elastic fiber that contacts a rigid smooth surface with its side surface under the coupling effect of normal and shear forces, based on the extensible Euler Bernoulli beam theory and the surface energy concept. The deformed configuration of the fiber is obtained analytically, and on the basis of this result, the detachment mode and the normal pull-off force of the fiber for a given shear force are predicted directly. It is also found that, due to the extensibility of the fiber, there exists a maximum normal pull-off force (MNPF) when an optimal shear force is applied. The MNPF will be enhanced by increasing the axial stiffness, and reduced by increasing the bending stiffness. In addition, generating an optimal pre-tension in the adhered part of the fiber will maximize the MNPF. The derived adhesion law is expected to contribute to the optimal design and applications of single-level fibrillar adhesives.  相似文献   
26.
As polymer networks infiltrated with water, hydro-gels are major constituents of animal and plant bodies and have diverse engineering applications. While natural hydro-gels can robustly adhere to other biological materials, such as bonding of tendons and cartilage on bones and adhe-sive plaques of mussels, it is challenging to achieve such tough adhesions between synthetic hydrogels and engineer-ing materials. Recent experiments show that chemically anchoring long-chain polymer networks of tough synthetic hydrogels on solid surfaces create adhesions tougher than their natural counterparts, but the underlying mechanism has not been well understood. It is also challenging to tune sys-tematically the adhesion of hydrogels on solids. Here, we provide a quantitative understanding of the mechanism for tough adhesions of hydrogels on solid materials via a com-bination of experiments, theory, and numerical simulations. Using a coupled cohesive-zone and Mullins-effect model val-idated by experiments, we reveal the interplays of intrinsic work of adhesion, interfacial strength, and energy dissipation in bulk hydrogels in order to achieve tough adhesions. We fur-ther show that hydrogel adhesion can be systematically tuned by tailoring the hydrogel geometry and silanization time of solid substrates, corresponding to the control of energy dis-sipation zone and intrinsic work of adhesion, respectively. The current work further provides a theoretical foundation for rational design of future biocompatible and underwater adhesives.  相似文献   
27.
The existence and uniqueness of the weak solution to the model for the dynamics of a viscoelastic rod which is in adhesive contact with an obstacle is established. The model consists of a hyperbolic equation for the vibrations of the rod coupled with a nonlinear ordinary differential equation (ODE) for the evolution of the bonding function. The model allows for failure, i.e., complete debonding, in finite time. The existence of the weak solution is established by using an existence result for ODEs and the Schauder fixed-point theorem. The limit of an elastic rod when the viscosity vanishes is studied, too.  相似文献   
28.
The model of binding of micelles of nonylphenol molecules to respective antibodies immobilized on the solid surface is proposed. The actual dimensions of micelles obtained from AFM measurements were used in modelling and allowed to predict the shape of the micelle. An account of non-spherical shape of micelles and their simultaneous binding to several antibodies allows estimation of the micelle binding energy.  相似文献   
29.
SnO2 nanocrystalline material was prepared with a sol-gel process and thin films of the nanocrystalline SnO2 were coated on the surface of bent optical fiber cores for gas sensing. The UV/vis absorption spectrometry of the porous SnO2 coating on the surface of the bent optical fiber core exposed to reducing gases was investigated with a fiber optical spectrometric method. The SnO2 film causes optical absorption signal in UV region with peak absorption wavelength at around 320 nm when contacting H2-N2 samples at high temperatures. This SnO2 thin film does not respond to other reducing gases, such as CO, CH4 and other hydrocarbons, at high temperatures within the tested temperature range from 300 °C to 800 °C. The response of the sensing probe is fast (within seconds). Replenishing of the oxygen in tin oxide was demonstrated by switching the gas flow from H2-N2 mixture to pure nitrogen and compressed air. It takes about 20 min for the absorption signal to decrease to the baseline after the gas sample was switched to pure nitrogen, while the absorption signal decreased quickly (in 5 min) to the baseline after switching to compressed air. The adhesion of tin oxide thin films is found to be improved by pre-coating a thin layer of silica gel on the optical fiber. Adhesion increases due to increase interaction of optical fiber surface and the coated silica gel and tin oxide film. Optical absorption spectra of SnO2 coating doped with 5 wt% MoO3 were observed to change and red-shifted from 320 nm to 600 nm. SnO2 thin film promoted with 1 wt% Pt was found to be sensitive to CH4 containing gas.  相似文献   
30.
对电极在染料敏化太阳能电池(DSCs)中主要起催化氧化还原反应及收集电荷的作用,铂对电极常用的制备方法为磁控溅射法,但其成本较高,制备条件苛刻. 本文通过引入低成本的表面活性剂Span-85,所制得的铂对电极的附着力、透光率和均匀性显著改善,实现了面积可控,与两步浸泡法和旋涂热解法制备的对电极在DSCs中的光电转换效率分别为7.30%,6.96%和7.03%. 紫外-可见吸收光谱、扫描电镜和附着力测试等结果表明,(1)添加表面活性剂有利于增加附着力及改善透光率和均匀性;(2)使用该法制备的Pt/FTO对电极的透光率与两步浸泡法制作的相同,且铂粒子分布更加均匀. 电化学阻抗图谱、塔菲尔极化曲线和循环伏安曲线结果表明,丝网印刷方法制备的Pt/FTO对电极具有更加优异的催化性能,且该法更有利于降低其生产成本和大规模生产.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号