首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, two and three-dimensional clustering models are developed to characterize the effect of nano-particle clustering on toughening of nanocomposite ceramics. It is found that crack pinning toughens the nano-composite ceramics because a higher stress intensity factor is needed for crack to propagate around or to pull-out the nano-particle. The nano-particle along the grain boundary steers the crack into the matrix grain due to the strong cohesion between the nanoparticle and the matrix. Since the fracture resistance of the grain boundary is lower than that of the grain lattice, the higher the probability of transgranular fracture induced by nano-particles, the tougher is the nano-composite. However, both crack pinning and transgranular fracture are affected by nano-particle clustering. Nanoparticle clustering, which increases with increasing volume fraction of nano-particles, leads to reduction of both the strength and toughness of the nano-composite ceramics. The larger the size of the clustered particle, and the more defects it contains, the easier it is for the crack to pass through the clustered particle, which means that the nano-particle clustering can reduce toughening induced by crack pinning and transgranular fracture. The theoretical prediction, based on the combination of the three mechanisms of nano-particles, is in agreement with the experimental data. The project supported by the National Natural Science Foundation of China (19891180) and the Research Grants Council of the HKSAR, China(HKU7081/00E)  相似文献   

2.
Crack pinning by heterogeneities is a central toughening mechanism in the failure of brittle materials. So far, most analytical explorations of the crack front deformation arising from spatial variations of fracture properties have been restricted to weak toughness contrasts using first order approximation and to defects of small dimensions with respect to the sample size. In this work, we investigate the non-linear effects arising from larger toughness contrasts by extending the approximation to the second order, while taking into account the finite sample thickness. Our calculations predict the evolution of a planar crack lying on the mid-plane of a plate as a function of material parameters and loading conditions, especially in the case of a single infinitely elongated obstacle. Peeling experiments are presented which validate the approach and evidence that the second order term broadens its range of validity in terms of toughness contrast values. The work highlights the non-linear response of the crack front to strong defects and the central role played by the thickness of the specimen on the pinning process.  相似文献   

3.
断裂是一个跨尺度复杂的物理过程,对宏观尺度的断裂行为已有深入的研究和发展,然而对微观尺度的断裂行为及断裂过程中应力场的变化缺乏深入的理解。本文通过分子动力学模拟,研究了具有不同初始缺陷(尖锐裂纹、钝裂纹和孔洞)的单晶镍的断裂行为和应力分布特征。结果表明,不同的初始缺陷导致了不同的断裂机制、断裂强度和抗断裂性能。含初始孔洞的单晶镍样品有最高的断裂强度和最强的抗断裂性能,这与孔洞扩展过程中堆积层错的形成密切相关。其次是含初始钝裂纹的样品,在裂纹扩展过程中出现由[100]超位错发射引起的裂尖钝化;含尖锐裂纹的样品表现为脆性断裂,裂尖原子没有出现微结构的变化,其强度和抗断裂性能最低。此外,不同的初始缺陷也会导致断裂过程中应力分布的变化,对含有尖锐裂纹的脆性断裂试样,高应力(拉伸应力、平均应力和米塞斯应力)总是出现在扩展裂纹的裂尖。而对于含有钝裂纹或孔洞的韧性断裂试样,高应力不仅分布在裂尖,也分布在位错发射和堆积层错形成的区域,在裂纹/孔洞扩展之前,应力随着加载时间的增加而迅速增加,而一旦裂纹或孔洞开始扩展,应力增加非常缓慢或几乎不增加,但拉伸应力值始终大于平均应力和米塞斯应力值。这表明,在I型...  相似文献   

4.
Fracture of a solid is a highly multiscale process that associates atomic scale bond breaking with macroscopic crack propagation, and the process can be dramatically influenced by the presence of defects in materials. In a nanomaterial, defect formation energy decreases with the reduction of material size, and therefore, the role of defects in crack formation and subsequent crack growth in such materials may not be understood from the classical laws of fracture mechanism. In this study, we investigated the crack formation process of a defective (with missing atoms) nanostructured material (NaCl) using a series of molecular dynamics (MD) simulations. It was demonstrated that simple defects in the form of several missing atoms in the material could develop into a planar crack. Subsequently, MD simulations on failures of nanosized NaCl with pre-defined planar atomistic cracks of two different lengths under prescribed tensile displacement loads were performed. These failure loads were then applied on the equivalent continuum models, separately, to evaluate the associated fracture toughness values using the finite element analysis. For small cracks, the fracture toughness thus obtained is cracksize dependent and the corresponding critical energy release rate is significantly smaller than Griffith’s theoretical value. Explanation for this discrepancy between LEFM and the atomistic model was attempted.  相似文献   

5.
研究了一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学问题。基于复变弹性理论和表面弹性理论获得了考虑表面效应时椭圆孔边裂纹的应力场、应力强度因子和能量释放率的解析表达;讨论了缺陷尺寸、裂纹/孔洞比、耦合系数和施加载荷对应力强度因子和能量释放率的影响。研究表明:考虑表面效应且缺陷的尺寸在纳米尺度时,声子场和相位子场的无量纲应力强度因子以及无量纲能量释放率具有明显的尺寸依赖;裂纹相对尺寸较小时,表面效应对声子场和相位子场的无量纲应力强度因子影响较小;纳米尺度时无量纲能量释放率随耦合系数的增加而增大;耦合系数一定时,无量纲能量释放率受到椭圆孔尺寸影响;随着声子场载荷的增大,无量纲能量释放率先减小后增加,最后趋于稳定;无量纲能量释放率随相位子场载荷的增大单调减小,非常小和非常大的声子场载荷(或相位子场载荷)屏蔽了相位子场载荷(或声子场载荷)的影响。  相似文献   

6.
研究了一维六方准晶中纳米尺度开裂孔洞的Ⅲ型断裂力学问题。基于复变弹性理论和表面弹性理论获得了考虑表面效应时椭圆孔边裂纹的应力场、应力强度因子和能量释放率的解析表达;讨论了缺陷尺寸、裂纹/孔洞比、耦合系数和施加载荷对应力强度因子和能量释放率的影响。研究表明:考虑表面效应且缺陷的尺寸在纳米尺度时,声子场和相位子场的无量纲应力强度因子以及无量纲能量释放率具有明显的尺寸依赖;裂纹相对尺寸较小时,表面效应对声子场和相位子场的无量纲应力强度因子影响较小;纳米尺度时无量纲能量释放率随耦合系数的增加而增大;耦合系数一定时,无量纲能量释放率受到椭圆孔尺寸影响;随着声子场载荷的增大,无量纲能量释放率先减小后增加,最后趋于稳定;无量纲能量释放率随相位子场载荷的增大单调减小,非常小和非常大的声子场载荷(或相位子场载荷)屏蔽了相位子场载荷(或声子场载荷)的影响。  相似文献   

7.
The paper reports about the fragmentation of cementitious composites in a laboratory jaw breaker. Two types of cement paste and six different concrete materials were investigated. Specific fragmentation energy and size distributions of the generated fragments were estimated. A microscopic inspection of the debris was also performed. Specific energy has values between 5 and 10 J/g. It is highest for a concrete with high porosity and lowest for a mortar. It is also found that the specific fragmentation energy depends on the amount of coarse aggregates in the material. Based on these findings, the specific fragmentation energy is linked to a brittleness parameter of the concrete materials derived from non-linear fracture mechanics. A detailed SEM-study showed features of non-linear fracture, namely crack branching, aggregate bridging, and pore–crack interaction. It was further found that a Rosin–Rammler–Sperling distribution best describes the size distribution of the generated fragments, except the mortar. An approximate estimation of the strain rate during the fragmentation was performed, and a value of s−1 was calculated for concrete.  相似文献   

8.
We consider an infinite square-cell lattice of elastic beams with a semi-infinite crack. Symmetric and antisymmetric bending modes of fracture under remote loads are examined. The related long-wave asymptotes corresponding to a continuous anisotropic bending plate are also considered. In the latter model, the symmetric mode is characterized by the square-root type singularity, whereas the antisymmetric mode results in a hyper-singular field. A solution for the continuous plate with a finite crack is also presented. These closed-form continuous solutions describe the fields in the whole plane. The main goal is to establish analytical connections between the ‘macrolevel’ state, defined by the continuous asymptote of the lattice solution, and the maximal bending moment in the crack-front beam, that is, to determine the resistance of the lattice with an initial crack to the crack advance. The solutions are obtained in the same way as for mass-spring lattices. Considering the static problems we use the discrete Fourier transform and the Wiener-Hopf technique. Monotonically distributed bending moments ahead of the crack are determined for the symmetric mode, and a self-equilibrated transverse force distribution is found for the antisymmetric mode. It is shown that in the latter case only the crack-front beam resists to the fracture development, whereas the forces in the other beams facilitate the fracture. In this way, the macrolevel fracture energy is determined in terms of the material strength. The macrolevel energy release is found to be much greater than the critical strain energy of the beam, especially in the hyper-singular mode. In both problems, it is found that among the beams surrounding the crack the crack-front beam is maximally stressed, and hence its strength defines the strength of the structure.  相似文献   

9.
For finite strain dynamics a variational model of crack evolution is formulated within the generalized oriented continuum methodology. In this approach position- and direction-dependent deformation and strain measures are used to describe the (macro)motion of the body with defects, which may evolve relative to the moving body. The inelastic behaviour of continua with evolving defects is represented by phenomenological equations including the transversal crack evolution. A strain-induced crack propagation criterion is defined by the difference between the strain energy release rate and the rate of the surface energy of the crack. A possible nucleation of microcracks in terms of the average drag coefficient of the crack configuration is proposed. Based on the crack growth criterion presented in this paper, the kinking of cracks is investigated using variational concepts. A constitutive damage model of Kachanov's type accounting for the crack density is derived in terms of the free energy functional and a dissipation potential.  相似文献   

10.
Graphene is the strongest material but its performance is significantly weakened by vacancy defects. We use molecular dynamics simulations to investigate the tensile behavior of a graphene which contains a single vacancy defect. Our results suggest that because of the single vacancy, the fracture strength of graphene losses about 17.7%. The stress concentration around the vacancy defect leads to the destruction of nearby six-member rings structure, which forms the initial crack. The propagation direction of this crack in defective graphene is at an angle of 60° to the tensile direction initially, but then becomes perpendicular to the tensile direction.  相似文献   

11.
The high energy concentration at the tip of a running crack leads to irreversible deformations, and a great amount of the deformation energy is set free as heat. Assuming that this moving heat source is of circular shape, the temperature distribution around the crack tip has been calculated. The temperatures are dependent on the radius of the heat source and the crack velocity. Some examples for the material glass are given. The very high temperatures computed lead to the supposition that the observed light emission during fast fracture is of thermal origin.  相似文献   

12.
谢怡玲  刘泽 《力学学报》2020,52(2):392-399
介绍了一种简单、低成本且可靠的方法在非晶合金中预制理想裂纹并应用于小试样平面应变断裂韧性的测试.近年来,非晶合金由于高弹性、高强度、耐磨及软磁性等优异性能 展示了广泛的应用前景.断裂韧性作为材料工程应用的一个重要指标,也引起了非晶合金领域的广泛关注. 然而,由于非晶合金的亚稳态结构以及最大可铸造尺寸的限制,目前关于非晶合金断裂韧性的测试还存在较大的挑战.一方面,铸造工艺造成的非晶合金热历史的差异、内部微孔洞和杂质等缺陷以及裂纹预制方式等都会显著影响其断裂韧性测试的可靠性;另一方面,非晶合金可铸造尺寸的限制使得目前绝大多数报导的断裂韧性值都是非平面应变的断裂韧性,导致即使是对于同种非晶合金,所报导的断裂韧性值也存在较大偏差.本文利用非晶合金在过冷液相温度下具有可热塑性成型的特性,对预制有缺口的非晶合金试样进行局部压缩成型,使得预制的缺口裂纹重新闭合形成类似疲劳裂纹的理想裂纹面.基于该方法对Zr基非晶合金进行断裂韧性测试,实验结果表明,随着试样厚度的增加,测试值迅速降低并趋向于一个定值.需要指出的是,通过设计实验使得试样在理想裂纹面区域形成局部凹陷,使得趋于定值的试样厚度远小于平面应变断裂韧性测试标准中的试样厚度要求.   相似文献   

13.
A thermally dissipative cohesive zone model is developed for predicting the temperature increase at the tip of a crack propagating dynamically in a nominally brittle material exhibiting a cohesive-type failure such as crazing. The model assumes that fracture energy supplied to the crack tip region that is in excess of that needed for the creation of new free surfaces during crack advance is converted to heat within the cohesive zone. Bulk dissipation mechanisms, such as plasticity, are not accounted for. Several cohesive traction laws are examined, and the model is then used to make predictions of crack tip heating at various crack propagation speeds in the nominally brittle amorphous polymer PMMA, observed to fail by a crazing-type mechanism. The heating predictions are compared to experimental data where the temperature field surrounding a high speed crack in PMMA was measured. Measurements are made in real time using a multi-point high speed HgCdTe infrared radiation detector array. At the same time as temperature, simultaneous measurement of fracture energy is made by a strain gauge technique, and crack tip speed is monitored through a resistance ladder method. Material strength can be estimated through uniaxial tension tests, thus minimizing the need for parameter fitting in the stress-opening traction law. Excellent agreement between experiments and theory is found for two of the cohesive traction law temperature predictions, but only for the case where a single craze is active during the dynamic fracture of PMMA, i.e. crack tip speed up to approximately 0.2cR. For higher speed fracture where subsurface damage becomes prominent, the line dissipation model of a cohesive zone is inadequate, and a distributed damage model is needed.  相似文献   

14.
基于分子动力学方法对含预制裂纹石墨烯进行扶手椅向拉伸断裂模拟。使用连续介质理论结合分子动力学计算石墨烯能量释放率,确定石墨烯能量释放率GIC为10.25 J/m2;应力强度因子KIC为 3.33MPam^1/2。进一步对影响石墨烯裂纹扩展速率的因素-初始裂纹长度与加载速率进行讨论。结果表明:裂纹初始长度与加载率会在一定程度上影响石墨烯中裂纹扩展速率。裂纹扩展速率会随着初始裂纹长度的增加而降低;但随着初始裂纹长度的增加,裂纹扩展速率对其敏感度降低。裂纹扩展速率会随着加载率的升高而增大。 初始裂纹长度与加载率对裂纹扩展速率的影响有一定的关联性,加载率的升高会降低裂纹扩展速率对初始裂纹长度变化的敏感度。在此基础上确定了石墨烯中裂纹扩展极限速率为8350 m/s。关联性,加载率的升高会降低裂纹扩展速率对初始裂纹长度变化的敏感度。在此基础上确定了石墨烯中裂纹扩展极限速率为8350 m/s。  相似文献   

15.
Dynamic cleavage fracture experiments of brittle single crystal silicon revealed several length scales of surface and path instabilities: macroscale path selection, mesoscale crack deflection, and nanoscale surface ridges. These phenomena cannot be predicted or explained by any of the continuum mechanics based equations of motion of dynamic cracks, as presumably critical energy dissipation mechanisms are not fully accounted for in the theories. Experimentally measured maximum crack speed, always lower than the theoretical limit, is another phenomenon that is as yet not well understood.We suggest that these phenomena depend on velocity dependent and anisotropic material property that resists crack propagation. The basic approach is that the bond breaking mechanisms during dynamic crack propagation vibrate the atoms at the crack front to generate thermal phonon emission, or heat, which provides additional energy dissipation mechanisms. This energy dissipation mechanism is a material property that resists crack propagation. To evaluate this property, we combined the continuum based elastodynamic Freund equation of motion with molecular dynamics atomistic computer “experiments”.We analyzed the above experimental dynamic fracture instabilities in silicon with the obtained velocity dependent and anisotropic material property and show its importance in cleavage of brittle crystals.  相似文献   

16.
A very simple model of the double cantilever beam (dcb) dynamic crack propagation specimen is studied. The main assumption on which the model is based is that the arms of the dcb specimen deform as shear beams. The particular problem studied is the dynamic growth of a sharp crack from a blunt pre-crack with the ends of the specimen arms held at a fixed separation distance. It is demonstrated that this simple model predicts crack motion which is qualitatively consistent with the results of more detailed numerical analyses of the problem and with experimental results. The analysis employs an energy balance crack propagation criterion and both constant specific fracture energy and a class of crack speed dependent fracture energies are considered. Among the features exhibited by the model is that, for constant specific fracture energy, the crack tip speed is constant from initiation up to arrest. On the other hand, for the same geometry and loading conditions, but a strongly crack speed dependent specific fracture energy, the crack speed decreases gradually between fracture initiation and crack arrest.  相似文献   

17.
Slurry flow and proppant placement in irregular fractures are crucial to evaluate hydraulic fracturing stimulation but need to be better understood. This study aims to investigate how irregular fracture affects proppant transport and distribution using laboratory experiments and micro-scale numerical models. The unresolved method of the computational fluid dynamics (CFD) and the discrete element method (DEM) considers Saffman lift force, Magnus force, and virtual mass force to accurately capture the frequent interaction between proppant and slickwater. Experimental results validated the reliability of the optimized CFD-DEM model and calibrated primary parameters. The effects of crack height and width, bending angle, and distance between the crack and inlet on particle distribution were studied. The results indicated that the improved numerical method could rationally simulate proppant transport in fractures at a scale factor. The small crack height causes downward and upward flows, which wash proppant to the fracture rear and form isolated proppant dunes. A wider region in the fracture is beneficial to build up a large dune, and the high dune can hinder particle transport into the fracture rear. When the crack is close to the inlet, the primary fracture without proppants will close to hinder gas production. The smaller the bending angle, the smaller the proppant dune. A regression model can precisely predict the dune coverage ratio. The results fundamentally understand how complex fractures and natural cracks affect slurry flow and proppant distribution.  相似文献   

18.
A plane problem for a crack moving with a subsonic speed along the interface of two piezoelectric semi-infinite spaces is considered. The crack is assumed to be free from mechanical loading. The limited permeable electric condition with an account of electric traction is adopted at its faces. A uniformly distributed mixed mode mechanical loading and an electric flux are prescribed at infinity. The problem is reduced to the Riemann–Hilbert problem by means of introducing a moving coordinate system and assuming that the electric flux is uniformly distributed along the crack region. An exact solution of this problem is proposed. It permits to find in closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region. The values of the electric flux are determined by solving the obtained equation. Thereafter, the stress and electric intensity factors as well as their asymptotic fields at the crack tip are also found. The particular case of a crack moving in a homogeneous piezoelectric material is considered. The values of the electric flux and the fracture parameters are found exactly in a simple form for this case. Also, a numerical analysis is performed for a crack propagating with a subsonic speed between PZT4 and PZT5 materials and for a crack moving in PZT4 material. The electric flux in the crack region, stress and electric intensity factors, crack opening and the energy release rate (ERR) are found as functions of the crack speed, loading and electric permeability of the crack medium. The influence of the electric traction on the crack faces upon the mentioned parameters is demonstrated.  相似文献   

19.
研究纳米尺度时开裂椭圆孔的III型断裂性能。基于表面弹性理论和保角映射技术,利用复势函数理论获得了缺陷(裂纹和椭圆孔)周围应力场和裂纹尖端应力强度因子的闭合解答。所得结果具有一般性,许多已有和新的解答可由本文退化的特殊情形得到。利用解析结果讨论了缺陷的绝对尺寸、椭圆孔的形状比以及裂纹的相对尺寸对应力强度因子的影响。结果表明:考虑表面效应且缺陷尺寸在纳米尺度时,应力强度因子具有显著的尺寸依赖效应;应力强度因子随椭圆孔形状比的变化规律受缺陷表面常数的影响;缺陷表面效应的影响取决于椭圆孔的形状比,非常大的形状比屏蔽了表面效应的影响;裂纹相对尺寸非常小时表面效应影响较弱,裂纹相对尺寸较大时表面效应较为明显。  相似文献   

20.
In phase field fracture models the value of the order parameter distinguishes between broken and undamaged material. At crack faces the order parameter interpolates smoothly between these two states of the material, which can be regarded as phases. The crack evolution follows implicitly from the time integration of an evolution equation of the order parameter, which is coupled to the mechanical field equations. Among other phenomena phase field fracture models are able to reproduce crack nucleation in initially sound materials. For a 1D setting it has been shown that crack nucleation is triggered by the loss of stability of the unfractured, spatially homogeneous solution, and that the stability point depends on the size of the considered structure. This work numerically investigates to which extend size effects are reproduced by the 2D phase field model. Exemplarily, a finite element study of the hole size effect is performed and the simulation results are compared to experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号