首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5788篇
  免费   478篇
  国内免费   5954篇
化学   11233篇
晶体学   61篇
力学   34篇
综合类   183篇
数学   20篇
物理学   689篇
  2024年   49篇
  2023年   232篇
  2022年   239篇
  2021年   201篇
  2020年   202篇
  2019年   226篇
  2018年   183篇
  2017年   200篇
  2016年   258篇
  2015年   251篇
  2014年   437篇
  2013年   390篇
  2012年   340篇
  2011年   339篇
  2010年   359篇
  2009年   425篇
  2008年   421篇
  2007年   424篇
  2006年   437篇
  2005年   438篇
  2004年   514篇
  2003年   568篇
  2002年   514篇
  2001年   634篇
  2000年   446篇
  1999年   410篇
  1998年   369篇
  1997年   417篇
  1996年   382篇
  1995年   329篇
  1994年   286篇
  1993年   302篇
  1992年   231篇
  1991年   232篇
  1990年   192篇
  1989年   181篇
  1988年   43篇
  1987年   28篇
  1986年   23篇
  1985年   28篇
  1984年   16篇
  1983年   18篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1959年   1篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
101.
马松  徐兴民  谢君  李鑫 《催化学报》2017,(12):1970-1980
光催化产氢技术是目前解决能源和环境问题的最有潜力的方法之一,因此制备安全高效的光催化剂已成为目前的研究热点.在目前研究的各种光催化剂中,CdS光催化剂因为具有较窄的带隙(2.4 eV)和合适的导带位置,所以在可见光催化产氢领域受到广泛关注.然而,光生电子/空穴对易复合和光腐蚀作用极大地限制了CdS光催化剂的放大应用.因此,人们采用众多改性策略以提高CdS光催化剂的可见光产氢活性,其中构建CdS纳米结构和负载助催化剂被认为是最有效的方式.构建CdS纳米结构既可以缩短载流子的迁移路径,也可以减少CdS晶体中的缺陷.很多不同纳米结构的CdS光催化剂已经被开发,例如纳米线、纳米颗粒和纳米棒等.因为制备过程极为复杂繁琐,所以CdS纳米片的研究鲜见报道.本文采用乙酸鎘和硫脲为原材料,通过简单的溶剂热法合成了CdS纳米片.在CdS的各类助催化剂中,由于常用的Pt,Ag和Au等贵金属的高成本和低储量等问题严重限制了它们的实际应用,所以近年来众多非贵金属助催化剂(例如MoS_2,WS2,NiS,NiO和WC等)得到了广泛关注.由于非贵金属助催化剂存在弱电导率和低功函数等问题,影响了对光生电子的收集和利用.纳米碳材料具有极高的电导率、强可见光吸收、有效的载流子分离和较多的反应位点等优点,因此组合纳米碳材料和非贵金属助催化剂被认为是一种有效的解决方案.本文首次采用炭黑和NiS_2作为双助催化剂改性CdS纳米片,通过简单的溶剂热/沉淀两步法成功合成了廉价高效的CdS/CB/NiS_2三元光催化体系.光催化产氢性能测试表明,CdS-0.5%CB-1%NiS_2展现出最高的光催化效率(166.7μmol h~(-1)),分别是CdS NSs和CdS-1.0%NiS_2的5.16和1.87倍.X射线衍射、高分辨电子显微镜和X射线光电子能谱结果证实了CdS催化剂的片状结构,且炭黑和NiS_2成功负载在CdS纳米片表面.紫外-可见漫反射结果表明,随着炭黑和NiS_2的负载,复合催化剂的吸收边缘产生明显的红移,且对可见光的吸收增强.荧光光谱、阻抗和瞬态光电流曲线测试结果证明,炭黑和NiS_2的加入可以有效地促进光生电子/空穴对分离.极化曲线结果表明,加入炭黑和NiS_2可以降低CdS的产氢过电势,因此加速表面产氢动力学.总之,炭黑和NiS_2之间显著的协同效应极大地提高了可见光吸收,促进光生电子/空穴对分离,加速表面产氢动力学,最终得到了三元光催化体系极高的光催化产氢活性.  相似文献   
102.
近年来,由于大气CO2浓度增加引起的温室效应正日益威胁着人类的生存与发展,CO2的捕获与利用是有望解决温室效应和能源危机的有效途径.CO2催化转化为甲醇成为众多研究者关注的焦点,这是因为甲醇不仅是一种重要的基本化工原料,也是一种洁净的绿色燃料和能源载体.Cu基催化剂广泛应用于CO2加氢合成甲醇反应,并表现出良好的催化性能.通常,金属催化剂的制备是采用H2对金属氧化物进行还原.然而,传统的气相还原过程伴随着强烈的热效应,且需要在高温(473-573 K)下进行,会引起表面铜颗粒长大并加速其聚集烧结,使得活性组分利用率下降.近年来,以NaBH4为还原剂的液相还原法逐渐受到人们的重视,该方法操作简单、快捷且条件可控,反应在低温下进行,放出的热量可在液相环境中迅速得到转移,大大抑制了铜颗粒的聚集.因此,液相还原法可制备出高铜分散度、高活性的催化剂.焙烧温度对铜基催化剂结构和催化性能的影响已得到广泛探究,但这仅限于含二价铜物种催化剂,焙烧温度对含多种铜价态催化剂的影响未见报道.由于液相还原法制备的催化剂含有还原态的铜物种(Cu0和Cu+),它们比Cu2+具有更强的流动性,因此在后续的焙烧过程中催化剂更容易发生烧结和聚集.本文采用液相还原法合成了Cu/Zn/Al/Zr催化剂,分别于423,573,723和873 K焙烧后用于CO2加氢合成甲醇反应,考察了焙烧温度对制备的铜基催化剂结构性质和催化性能的影响,并与传统共沉淀法制备的催化剂进行了对比.结果显示,随着焙烧温度升高,铜物种聚集作用增强,金属铜颗粒尺寸增大,873 K时烧结出现显著增强.由于比表面积随焙烧温度升高而减小,高温度焙烧的催化剂具有小的表面碱性位数目.焙烧温度会影响催化剂中铜物种与其它组分的相互作用,进而影响催化剂的还原.随着焙烧温度的升高,催化剂的还原温度逐渐降低,表面Cu+/Cu0的比例先增后减.CO2加氢活性评价显示,液相还原法制备的催化剂具有更高的催化活性,尤其是甲醇选择性;随着焙烧温度升高,催化剂的CO2转化率和甲醇选择性先增后减,CZAZ-573催化剂具有最高活性,且在1000 h长周期活性测试中表现稳定.CO2转化率与催化剂暴露金属铜的比表面积密切相关.相比Cu0,产物甲醇更容易在Cu+表面催化生成,催化剂表面的Cu+/Cu0比与甲醇选择性的变化规律一致.通过调控焙烧温度可得到高Cu比表面积以及高Cu+/Cu0比的催化剂,有利于CO2加氢生成甲醇.  相似文献   
103.
有序介孔Sn-SBA-15负载铂催化剂上丙烷脱氢性能的提高   总被引:1,自引:0,他引:1  
丙烷脱氢制丙烯能够将低级烷烃转变成烯烃,是有效扩大丙烯来源的生产工艺.铂锡催化剂用于丙烷催化脱氢的主要缺点是稳定性差、选择性低,通过稳定锡的氧化态可以大大改善催化剂的脱氢性能及稳定性.本文采用一锅水热合成法制备了一系列高比表面积具有高度有序介孔结构的Sn掺杂的Sn-SBA-15材料,并作为载体负载铂催化剂用于丙烷脱氢反应.同时利用传统浸渍法(IM)合成了Sn/SBA-15-IM材料作为对比.结合X射线衍射(XRD)、BET比表面积和孔体积测试、红外光谱(FT-IR)、X射线光电子能谱、H2程序升温脱附(H2-TPD)、热重分析(TGA)、扫描电镜和透射电镜等多种物理化学表征手段研究了Sn-SBA-15材料和催化剂的结构性质及其丙烷脱氢反应性能.XRD和BET比表面积和孔体积测试结果表明,水热合成法原位引入助剂Sn不影响载体SBA-15的有序孔道结构,同时能够保持较大的比表面积.传统浸渍法引入Sn会堵塞载体孔道,载体比表面积及孔道有序度下降.Sn掺杂进入SBA-15骨架能够增强Sn物种与载体的相互作用,有利于Sn物种在反应过程中保持氧化态,提高催化剂丙烷脱氢反应的活性及选择性.当Sn掺杂量增至2.0 wt%时,Pt,Sn组分与载体之间的相互作用减弱,催化剂中Sn0物种所占比例增多,导致催化剂丙烷脱氢性能下降.在丙烷脱氢反应过程中,一锅法引入Sn的催化剂上反应活性和稳定性明显优于浸渍法引入Sn的催化剂.其中,Pt/0.5 Sn-SBA-15催化剂表现出最优的丙烷脱氢性能,丙烷转化率为43.8%,丙烯选择性为98.5%.  相似文献   
104.
合成了纳米尺度氧化石墨烯(NGO)层,用作碳催化剂高效催化苄醇与芳香醛的氧化反应.对于醇氧化反应,当80℃时H2O2存在下,NGOs(20 wt%)可高效催化醇选择性生成醛,其反应速率和产率取决于醇上取代基的性质.对于4-硝基苄醇,反应24 h后,只有10%可转换为相应羧酸.相反,4-甲氧基苄醇和二苯基甲醇分别反应仅9和3h则可完全转化为对应的羧酸和酮.NGO碳催化剂上芳香醛氧化速率高于醇氧化速率.对于所有的醛,采用7 wt% NGO作催化剂,在70℃反应2-3 h后,就可完全转化为相应羧酸.我们讨论了NGO催化剂结构对苄醇和芳香醛氧化反应影响的可能机理.  相似文献   
105.
通过简单的一锅两步法制备了三氟金属(铝,钛,锆)接枝介孔SBA-15 (AlTf/S,TiTf/S,ZrTf/S)固体酸材料,并通过XRD,N2吸附,TGA,FTIR,原位吡啶FTIR和元素分析对这些材料进行了详细的表征.其中,ZrTf/S能够高效催化环氧化物温和条件下被胺或醇开环生成对应β-氨基醇或β-烷氧基醇,并且催化剂能循环利用.ZrTf/S相较于AlTf/S和TiTf/S酸性最强,因而催化活性也最高.  相似文献   
106.
X射线吸收光谱(XAS)可为负载型单中心(单原子或单核金属络合物)催化剂的结构和电子特性提供重要信息.虽然XAS技术可表征真实反应条件下、无需长程有序结构的催化剂,并且可提供对于负载型单中心催化剂非常重要的金属-载体界面信息;但是它给出的信息是包括与催化有关或无关的所有负载型金属物种的平均信息.负载型催化剂的准确表征具有长期挑战性,也限制了我们准确地理解催化剂的构效关系.为了更好地利用XAS表征技术,深入研究催化剂的构效关系,并最终用其指导设计开发出高效的催化剂,制备具有均一结构活性位的负载型单中心催化剂,并采用XAS及相关技术对其表征至关重要.本文列举了一些实例以说明XAS在表征具有均一结构活性位的负载型单中心催化剂方面的能力,以及XAS如何与其他技术(如扫描透射电子显微镜和红外光谱)互补,为以分子筛和金属-有机骨架材料为载体而制得的具有均一结构活性位的负载型单中心催化剂提供原子尺度的信息.  相似文献   
107.
单原子催化剂(SACs)是指金属以单原子形式均匀分散在载体上形成的具有优异催化性能的催化剂.与传统载体型催化剂相比,SACs具有活性高、选择性好及贵金属利用率高等优点,在氧化反应、加氢反应、水煤气变换、光催化制氢以及电化学催化等领域都具有广泛应用,是目前催化领域的研究热点之一.常见的SACs制备方法有共沉淀法、浸渍法、置换反应法、原子层沉积法以及反奥斯瓦尔德熟化法等.实验及理论研究表明,单原子催化剂高的活性和选择性可归因于活性金属原子和载体之间的相互作用及由此引起的电子结构改变.载体是影响单原子催化剂性能的重要因素之一.目前常用的SACs载体有金属氧化物、二维材料和金属纳米团簇等,本文着重综述了这三种负载型SACs的制备、表征、催化性能及催化机理,并概述了SACs未来可能的发展方向和应用.研究表明,共沉淀法、湿浸渍法和反奥斯瓦尔德熟化法等方法可用来制备氧化物负载的SACs.高角环形暗场像-扫描透射电子显微镜(HAADF-STEM)表明金属是以单原子形式均匀分散在载体上,近边X射线吸收精细结构(XANES)结果表明金属原子与载体之间存在着强相互作用.实验和理论研究均表明该类催化剂在CO氧化反应、水煤气转化及乙炔加氢生成乙烯等反应中具有高的催化活性和稳定性.采用化学气相沉积法和原子层沉积法等方法可以将金属原子稳定地负载在具有缺陷活性位点的石墨烯、MXene及六方氮化硼等二维材料上并相应制备出SACs.X射线吸收精细结构谱(EXAFS)和XANES分析表明样品中金属以单原子形式存在,而且金属原子与载体之间也存在着强相互作用,理论计算表明金属原子与二维载体之间的电荷转移是SACs活性高的主要原因.置换反应法和连续还原法是制备溶胶型SACs的有效方法,其中置换反应法可将活性金属原子原位组装在金属模板团簇的顶点位置,连续还原法可将活性原子负载于金属模板团簇的表面.DFT计算表明活性原子和金属模板团簇之间存在电荷转移效应,这是溶胶型SACs具有非常高的催化活性的主要原因.SACs下一步的研究方向可能是:(1)研究开发新型SACs,尽可能提高催化剂中活性金属原子的含量;(2)深入研究SACs的结构、活性以及催化机理之间的关系;(3)尝试将SACs大规模应用于工业催化.  相似文献   
108.
负载型纳米贵金属催化剂是用于多相催化反应的重要的催化剂之一,也是各国催化科学与技术研发的重点,其工业应用也越来越广泛.理论和实验的研究结果均表明,当载体表面的金属粒子尺寸减小至亚纳米级乃至更小的低配位、不饱和的原子团簇时,它们常常成为诱发催化反应的活性中心,呈现更高的催化活性和选择性.将负载的金属尺寸由纳米量级减小至分散的金属团簇甚至单原子而使每个原子成为反应的活性位点已成为研究的重点.最近,由张涛等首次合成的单原子催化剂(SAC)Pt1/FeOx引起了国内外催化及表面科学工作者的极大关注.单原子催化剂作为连接均相催化剂和多相催化剂的桥梁,不仅具有非均相催化剂的稳定、易于与反应体系分离、易表征等优点,而且具有均相催化剂活性中心结构均一、活性中心原子利用率百分之百等优点.一方面,单原子催化剂给多相催化领域注入了新的活力,另一方面也更有利于运用量子与计算化学的研究方法建立与实验相匹配的理论模型并从原子水平上进一步理解多相催化反应的微观作用机理.实验和理论的研究结果表明,其它单原子催化剂如Ir1/FeOx,Au1/FeOx和Ni1/FeOx催化CO氧化反应表现出不同的活性.然而,底物FeOx中的Fe同样是第VIII族中的3d过渡金属,却在低温下对CO氧化反应没有催化活性.我们围绕这一问题,重点研究了底物FeOx在负载单原子Pt1前后催化CO氧化的反应机理和活性,解释了单原子催化剂Pt1/FeOx相比于底物FeOx为何具有如此高的催化活性的原因.我们采用Vienna Ab-initio Simulation Package(VASP)从头算模拟软件和密度泛函理论(DFT)的广义梯度近似(GGA)进行了理论计算.其中,选择PBE泛函描述体系的交换关联相互作用,用投影缀加波(PAW)赝势基组方法描述体系中的电子和离子实之间的相互作用,对Fe原子采用了DFT+U方法进行d电子强相关校正,并使用Dimer计算方法搜寻反应过渡态.研究结果表明,底物FeOx中氧空位的再生伴随第二个CO2分子从催化剂表面脱附的过程需要较高的活化势垒(1.09 eV),这一过程是整个CO氧化反应的决速步.与此相比较,Pt1/FeOx催化剂中,由于Pt原子代替了表面Fe原子,导致电子结构及性质的显著变化,有利于CO的活化、氧化和CO2的脱附.我们从电子能量态密度(DOS)和Bader电荷分析及模型分子团簇的轨道相互作用的角度进一步分析了两种催化剂存在差异的本质;揭示了单原子催化剂Pt1/FeOx中Pt1和底物FeOx之间的相互作用的机理及催化剂表面Pt单原子在催化反应过程中的关键作用.  相似文献   
109.
高活性低成本氧还原反应(ORR)电催化剂是燃料电池和金属/空气电池等可再生能源技术的关键组成部分.在离子液体[(C16mim)2CuCl4]和质子化的石墨化氮化碳(g-CN)的存在下,采用简易的水热反应制备了Cu/g-CN电催化剂用于ORR.与纯的g-CN相比,所制Cu/g-CN表现出高的ORR催化活性:起始电势正移99 mV,为2倍动力学电流密度.另外,Cu/g-CN还表现出比商用Pt/C(HiSPECTM 3000,20%)催化剂更好的稳定性和甲醇容忍性.因此,该催化剂作为廉价的高效ORR电催化剂有望应用于燃料电池中.  相似文献   
110.
大量乙烯中少量乙炔的去除是化工生产中的重要过程之一,理想途径是将其选择加氢生成乙烯.负载型Pd催化剂因具有很高的乙炔转化率而被广泛用于该过程,但乙烯选择性很低,同时会使原料气中的乙烯被加氢,造成原料气的浪费.采用其它元素对Pd纳米粒子表面修饰,覆盖部分活性位,可以在一定程度上提高乙烯选择性,但是会大大降低Pd的利用率.因此,制备兼具高活性和高选择性且经济实用的催化剂,仍是这一过程亟待解决的主要问题之一.我们的前期工作中,将Pd与IB族金属(Au,Ag,Cu)分别结合制备得到了一系列含Pd的合金单原子催化剂(SAC),发现它们在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.其中,Pd的用量仅为ppm级别,大大提高了Pd的利用率.作为IB族最为廉价的金属,Pd与Cu形成的合金SAC在提高Pd原子利用率的同时,能够进一步降低催化剂的经济成本.然而,当形成合金SAC时,Cu/Pd原子比例的极限值仍然不确定.本文通过固定Pd的担载量,采用简单的等体积共浸渍的方法,制备了一系列不同Cu/Pd原子比例的氧化硅负载的双金属催化剂.首先,我们采用程序升温还原(TPR)和X射线衍射(XRD)对催化剂的还原能力和双金属纳米粒子的尺寸进行了考察.进一步,采用X射线吸收光谱(XAS,包括EXAFS和XANES)对双金属催化剂中Pd的配位环境进行了分析.最后,结合它们在大量乙烯存在条件下的乙炔选择加氢反应中的催化性能,对形成合金SAC时Cu/Pd原子比例进行了讨论.TPR结果显示,Cu与Pd结合时会促进双金属纳米粒子的还原.XRD结果表明,随着Cu含量的降低,双金属纳米粒子的尺寸明显减小.XANES结果证实,当Pd与Cu结合时,Pd会带有部分负电荷,这也与Pd的电负性大于Cu相一致.通过对EXAFS拟合结果进行分析,我们发现当Cu/Pd的原子比例≥40/1时,Pd原子可以被Cu原子完全分隔开,形成含Pd的合金SAC,使其在大量乙烯存在条件下的乙炔选择加氢反应中表现出优异的催化性能.通过对还原温度的考察,我们发现还原温度由250 oC升高到400 oC时,对同一催化剂的催化性能影响不大;EXAFS拟合结果显示,对比分别经过250和400 oC还原后的催化剂,Pd的配位环境变化不明显,这可能是导致催化性能相似的主要原因.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号