首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   406篇
  免费   8篇
  国内免费   3篇
化学   66篇
晶体学   2篇
力学   171篇
数学   36篇
物理学   142篇
  2023年   5篇
  2022年   5篇
  2021年   3篇
  2020年   15篇
  2019年   8篇
  2018年   5篇
  2017年   12篇
  2016年   17篇
  2015年   14篇
  2014年   20篇
  2013年   17篇
  2012年   13篇
  2011年   41篇
  2010年   21篇
  2009年   35篇
  2008年   26篇
  2007年   35篇
  2006年   20篇
  2005年   15篇
  2004年   15篇
  2003年   22篇
  2002年   10篇
  2001年   6篇
  2000年   7篇
  1999年   7篇
  1998年   10篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1969年   1篇
排序方式: 共有417条查询结果,搜索用时 46 毫秒
101.
Mucins have long been recognized as instrumental to biolubrication but the molecular details of their lubrication mechanisms have only been explored relatively recently. The glycoprotein PRG4, also known as lubricin, shares many features with mucins and appears to lubricate through similar mechanisms. A number of studies have contributed to a more in-depth understanding of mucin adsorption and layer formation on surfaces and the mechanisms by which these layers lubricate. Although mucinous glycoproteins differ in their aggregation properties, their adsorption behaviors on surfaces, and in their ability to reduce friction, they share important similarities favorable for lubrication. They are highly hydrated, they adsorb strongly to a broad range of surfaces, and the layers they form are both sterically and electrostatically repulsive, all attributes thought to contribute to boundary lubrication. They also hydrophilize hydrophobic surfaces, promoting the formation of aqueous fluid films that can lower friction at already relatively low sliding speeds. In this paper we briefly review current knowledge of mucin adsorption and lubrication, with a focus on recent advances.  相似文献   
102.
Commercial FeAl powders and ZrO2 nano-particles as well as CeO2 additive were reconstituted into a novel multi-compositional feedstock powders via spray drying. The resulting feedstock powders were used to deposit FeAl/CeO2/ZrO2 nano-composite coating by plasma spraying on 1Cr18Ni9Ti stainless steel. An X-ray diffractometer (XRD), a scanning electron microscope equipped with an energy dispersive spectrometer (SEM/EDS), and a field emission scanning electron microscope equipped with an energy dispersive spectrometer (FESEM/EDS) were employed to characterize the microstructure of the as-prepared feedstock powders and nano-composite coating. At the same time, the mechanical properties and friction and wear behavior of the nano-composite coating and pure FeAl coating were comparatively evaluated by using a Vickers microindentation tester and ball-on-disk sliding wear tribotester, respectively. And the wear mechanisms for the two types of coatings are discussed in terms of their microstructure and mechanical properties. Results indicate that the nano-composite coating has a much higher hardness and fracture toughness as well as drastically increased wear resistance than pure FeAl coating, which could be mainly attributed to the reinforcing effect of ZrO2 nano-particles and partially attributed to the refining effect of CeO2 in the nano-composite coating.  相似文献   
103.
研究了镍(Ni)过渡层对镍基合金718基底上沉积的银自润滑涂层性能的影响.实验结果显示,具有过渡层的银涂层晶粒尺寸变小,晶格参数和晶格应变无明显变化,涂层表面更加致密,缺陷减少.在77~300K热冲击50次后,涂层表面无裂纹、剥落等现象,具有良好的抗热震性能.在常温大气、常温真空和?100°C真空三种下,对涂层的摩擦磨...  相似文献   
104.
陈朗  罗小平  王维  杨卫国 《低温与超导》2012,40(6):49-53,68
为研究纳米流体微尺度沸腾传热流阻及压降特性,文中以体积浓度为0.2%的水基Al2O3纳米流体为试验工质,在尺寸为0.6mm×2mm矩形微槽道中进行沸腾传热实验,建立实验模型,分析纳米流体沸腾传热两相摩擦乘子的影响因素及进出口压降组成,并将本实验的两相摩擦压降值与现有理论模型及参数修正后理论模型预测值进行比较。结果显示,在本实验给定的条件下,实验段两相流压降中88.6%为两相摩擦压降。与L-M模型相比,M-H修正模型和Z-M修正模型都能较好地预测实验结果。其中经M-H修正模型能更好地预测本实验的实验值,使得平均误差减小为21.2%,大大降低了原L-M模型的误差。  相似文献   
105.
Novel cationic polyelectrolytes with a brush-on-brush structure of poly(ethylene oxide) (PEO) side chains and a charge-containing polyacrylate backbone were synthesized. The PEO side chains were not directly attached to the backbone but via polymethacrylate spacers, thus locating the PEO chains a distance away from the charged units of the backbone. The cationic brush-on-brush polyelectrolytes with high density of PEO chains showed a strong affinity to silica surfaces, provided the backbone charge density was high enough. The adsorption of these polymers was studied by QCM-D giving very high sensed mass, 20 mg/m2. It was shown by direct force measurements that protective surface layers were formed by the novel polyelectrolytes, generating strongly repulsive steric forces, which provided an effective barrier against flocculation. The adsorbed layer was sufficiently robust to withstand sliding experiments under a pressure of up to 35 MPa. The friction force in water was very low, and the lubrication was characterized by a friction coefficient in the range of 0.02-0.06.  相似文献   
106.
In this paper we derive an accurate composite friction factor vs. Reynolds number correlation formula for laminar, transition and turbulent flow in smooth pipes. The correlation is given as a rational fraction of rational fractions of power laws which is systematically generated by smoothly connecting linear splines in log-log coordinates with a logistic dose curve algorithm. This kind of correlation seeks the most accurate representation of the data independent of any input from theories arising from the researchers’ ideas about the underlying fluid mechanics. As such, these correlations provide an objective metric against which observations and other theoretical correlations may be applied. Our correlation is as accurate, or more accurate, than other correlations in the range of Reynolds numbers in which the correlations overlap. However, our formula is not restricted to certain ranges of Reynolds numbers but instead applies uniformly to all smooth pipe flow data for which data is available. The properties of the classical logistic dose response curve are reviewed and extended to problems described by multiple branches of power laws. This extended method of fitting which leads to rational fractions of power laws is applied to data of Marusic and Perry (1995) [1] for the velocity profile in a boundary layer on a flat plate with an adverse pressure gradient, to data of Nikuradse (1932) [2] and McKeon et al. (2004) [3] on friction factors for flow in smooth pipes and to the data of Nikuradse [4] for effectively smooth pipes.  相似文献   
107.
The first observation of bulk phase separation in immiscible natural rubber (NR)/poly(methyl methacrylate) (PMMA) film using atomic force microscopy (AFM) is reported. Three different forms of AFM measurements: topographic, friction force imaging, and nanoindentation have been effectively used to investigate combined morphological and compositional mapping of the NR/PMMA system. The fracture temperature during sample microtoming and material physical properties could be responsible for the observed topographic contrast. The stronger contrast of friction imaging, relative to topographic imaging, is ascribed to local variations in mechanical properties of the phase-separated domains. Friction force imaging associated with nanoindentation response, performed under AFM force mode, highlights the AFM's ability for probing local friction, adhesion, and elastic properties, and for compositional mapping of heterogeneous polymer film. The resulting friction force imaging along with the response of the nanoindentation are in good agreement, indicating that PMMA exists mainly near the modified NR surface.  相似文献   
108.
Carbon fabric (CF) was surface treated with silane-coupling agent modification, HNO3 oxidation, combined surface treatment, respectively. The friction and wear properties of the carbon fabric reinforced phenolic composites (CFP), sliding against GCr15 steel rings, were investigated on an M-2000 model ring-on-block test rig. Experimental results revealed that combined surface treatment largely reduced the friction and wear of the CFP composites. Scanning electron microscope (SEM) investigation of the worn surfaces of the CFP composites showed that combined surface modified CFP composite had the strongest interfacial adhesion and the smoothest worn surface under given load and sliding rate. SEM and X-ray photoelectron spectroscopy (XPS) study of carbon fiber surface showed that the fiber surface became rougher and the oxygen concentration increased greatly after combined surface treatment, which improved the adhesion between the fiber and the phenolic resin matrix and hence to improve the friction-reduction and anti-wear properties of the CFP composite.  相似文献   
109.
Frictional stick-slip dynamics is discussed using a model of one oscillator pulled by a nonlinear spring force. We focus our attention on the nonlinear spring parameter k0. The dynamics of the model is carefully studied, both numerically and analytically. Our numerical investigation, which involves bifurcation diagrams, shows a rich spectrum of dynamical behavior including periodic, quasi-periodic and chaotic states. On the other hand, and for a good selection of parameters , the motion of the particle involves periodic stick-slip, erratic and intermittent motions, characterized by force fluctuations, and sliding. This study suggests that the transition between each of motion strongly depends on the nonlinear parameter k0. The system also displays resonance at fractional frequencies of the oscillator.  相似文献   
110.
Using a tight-binding atomistic simulation, we simulate the recent atomic-force microscopy experiments probing the slipperiness of graphene flakes made slide against a graphite surface. Compared to previous theoretical models, where the flake was assumed to be geometrically perfect and rigid, while the substrate is represented by a static periodic potential, our fully-atomistic model includes quantum mechanics with the chemistry of bond breaking and bond formation, and the flexibility of the flake. These realistic features, include in particular the crucial role of the flake rotation in determining the static friction, in qualitative agreement with experimental observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号