首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   2篇
  国内免费   8篇
化学   25篇
晶体学   1篇
力学   4篇
物理学   4篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2004年   4篇
  2001年   1篇
  2000年   3篇
排序方式: 共有34条查询结果,搜索用时 515 毫秒
11.
在溶剂热条件下制备了系列新配合物:[Cr2(tpc)2(HCOO)2(OH)2]·4H2O (1)、[Ba(tpc)2(H2O)2]n (2)、[Zn2(tpc)2(NO3)2]n (3)、[Pb(Htpc)(NO3)2]·2H2O (4)和[Rh(Htpc)Cl3]·CH3OH·H2O (5)(Htpc=2,2′∶6,2″-三联吡啶-4-羧酸)。X射线单晶衍射分析表明,有机配体呈4种不同的配位方式;配合物1~5通过C—H…O/N氢键和π…π相互作用形成了新颖的超分子网络。研究了这些配合物的发光性能。在365 nm紫外辐射下,晶体2~5分别呈现绿色、蓝色...  相似文献   
12.
基于对Lenosky 碳-碳共价键作用势连续化得到的单层石墨烯的势能和Hamilton 原理,导出了单层石墨烯的动力学方程. 使用该数学模型及Galerkin 方法,研究了矩形单层石墨烯片的静力挠曲问题. 结果显示,石墨烯片的几何尺寸较小时,弯曲刚度对结构的受力影响较大,可用板理论来描述;随着结构尺寸的增大,弯曲刚度的影响迅速降低;当矩形石墨烯片的短边尺寸大于10 nm 时,可以忽略弯曲刚度对结构的影响,使用薄膜理论来描述单层石墨烯的力学性质.   相似文献   
13.
以天然产物腰果酚为原料,利用其酚羟基与环氧基的反应活性,通过开环醚化反应制备了两种腰果酚基不饱和树脂单体。通过傅里叶红外光谱研究了合成过程中主要活性基团的变化,结合核磁共振氢谱及凝胶渗透色谱分析进一步确定了合成树脂单体的分子结构,并利用红外光谱法对树脂单体的紫外光固化行为进行了研究,且对其光固化物进行了热重分析。研究表明:分子结构分析确认了目标产物的成功合成,树脂单体的分子结构以及不饱和双键含量对树脂的固化速度和固化物的热稳定性有着重要影响,两种单体在30 s内均已基本达到最高固化水平,光固化物的主分解初始温度均可达到350 ℃以上。  相似文献   
14.
澜沧江跨越管道工程的跨越区山体高耸挺拔、地势险峻,两岸陡崖上分布有危岩及崩塌堆积体,其地理位置极易受到崩塌落石危害,落石冲击作用会造成管道刮痕、压坑,引起管道变形失稳甚至破裂,造成油品泄漏。本文以澜沧江跨越段管道及两岸落石为研究对象,首先运用Roc Fall软件建立落石运动路径数值模拟模型,分析落石质量对落石运动过程的影响,并探究了不同质量落石撞击管道时,落石携带的最大动能等特性参数影响规律;然后运用CAESAR II软件对澜沧江跨越段天然气管道进行分析,确定会使其处于危险(或被破坏)状态的落石质量阈值。分析结果可为澜沧江跨越管道落石灾害防护和管道安全运营决策提供科学建议,也可以为地理条件与澜沧江管道相似的管道工程设计、敷设施工、上方危岩防护规划提供指导和借鉴。  相似文献   
15.
采用甲硫酯与NH2OH·HCl在室温条件下反应,合成了3-(2-对甲苯基乙烯基)-5(4H)-异唑酮,通过单晶X射线衍射确定了产物的结构.由1HNMR确定的构型与晶体结构完全一致,表明标题化合物在弱极性溶剂(如乙醚和氯仿)中是稳定的.半经验AM1和PM3计算的C7和C8净电荷(分别为-0.077,-0.101)可能是H7和H8化学位移(分别为6.83和6.96)很接近的主要原因.B3LYP/6-311G**基组计算的异构体能量数据表明,3-(2-对甲苯基乙烯基)-5(4H)-异唑酮是最稳定的构型  相似文献   
16.
在混合溶剂热条件下,以4-[(羧甲基)硫代]-苯甲酸(CMTB)为配体合成了[Pb(CMTB)H2O]n(1)和[Cd(CMTB)]n(2)两个配位聚合物,并用X-射线单晶结构分析、电感耦合等离子光谱和红外光谱对其进行了表征。化合物1属于三斜晶系,空间群为P1,晶胞参数为a=0.645 08(13)nm,b=0.847 83(17)nm,c=0.956 30(19)nm,α=90.37(3)°,β=92.75(3)°,γ=106.40(3)°,Z=2;化合物1具有二维层状结构,每1个Pb(Ⅱ)与来自4个配体的5个氧原子以及1个来自水分子的氧原子配位,形成了1个变形八面体的几何构型。化合物2为单斜晶系,空间群是P21,晶胞参数为a=0.786 27(16)nm,b=0.600 55(12)nm,c=1.001 3(2)nm,β=91.14(3)°,Z=2。化合物2是一个二维层状化合物,Cd(Ⅱ)与5个氧原子和1个硫原子配位形成了六配位的八面体构型。同时,我们对两个配合物的荧光性质进行了研究。  相似文献   
17.
何俊  黄坤  庄继成 《人工晶体学报》2021,50(7):1200-1221
现代显微镜中的物镜受限于瑞利衍射极限,其分辨率不能满足生物成像、材料科学以及光刻等领域的需求。目前,突破瑞利衍射极限的方法可分为近场(如扫描近场光学显微镜、超透镜、微球透镜)和远场(如受激辐射损耗显微镜、光激活定位显微镜、随机光学重建显微镜)方法。然而,前者利用纳米探针散射物体表面一个波长范围内的倏逝波,极具挑战性;而后者对样品有选择性,只适用于荧光分子样品,且会对样品造成损伤。近年来,平板透镜利用波带片、光子筛以及梯度超构表面等人工微纳结构来控制光的衍射,具有小型化、高数值孔径、大焦深、亚衍射极限聚焦等功能,为远场无标记超分辨率成像提供了一个可行的解决方案。本文从衍射聚焦光学的统一理论出发,总结平面衍射透镜的最新进展,揭示基于光场调控实现纳米聚焦的物理机制,介绍平板衍射透镜的设计原理、光学性能、微纳结构特性和材料影响,详细讨论平板衍射透镜的光学像差(如离轴像差和色差)及其校正,平板衍射透镜在纳米成像、光刻以及光电子能谱仪中的应用,最后展望其未来的发展方向和机遇。  相似文献   
18.
李非飞  黄坤  吴佳丽  李霞 《应用力学学报》2020,(1):330-337,I0023
腐蚀是造成管道失效的重要原因之一。为了深入了解现有X80管道的单腐蚀缺陷,本文针对X80管道单腐蚀缺陷失效机理进行了研究。首先建立并验证了有限元模型,通过大量的有限元模拟计算,建立了单腐蚀X80管道失效分析数据库;其次根据计算结果对腐蚀管道的失效机理进行了研究,包括单腐蚀X80管道的破坏模式、破坏过程以及应力分析;同时对影响X80腐蚀管道失效表现的各项参数进行了分析,如深度、长度、宽度、缺陷位置及管道径厚比等;最后利用有限元计算结果,拟合了单腐蚀X80管道的失效压力预测公式,并通过对比爆破实验数据验证了回归公式的适用性。  相似文献   
19.
在溶剂热条件下制备了系列新配合物:[Cr2(tpc)2(HCOO)2(OH)2] ·4H2O (1)、[Ba(tpc)2(H2O)2]n (2)、[Zn2(tpc)2(NO3)2]n (3)、[Pb(Htpc)(NO3)2]·2H2O (4)和[Rh(Htpc)Cl3]·CH3OH·H2O (5)(Htpc=2,2''∶6,2″-三联吡啶-4-羧酸)。X射线单晶衍射分析表明,有机配体呈4种不同的配位方式;配合物1~5通过C—H…O/N氢键和π…π相互作用形成了新颖的超分子网络。研究了这些配合物的发光性能。在365 nm紫外辐射下,晶体2~5分别呈现绿色、蓝色、蓝紫色和金色。  相似文献   
20.
陈新  黄坤林  刘玺 《结构化学》2011,30(4):460-463
A coupled 1,4-dihydrylpyridine compound(C40H48N2O10,1) has been synthesized.Its structure was determined by single-crystal X-ray diffraction.The crystal is of monoclinic system,space group P21/c with a = 8.3300(2),b = 15.720(3),c = 14.480(3) ,β = 90.08(3)°,V = 1896.1(7) 3,Z = 2,Mr = 716.80,Dc = 1.255 g/cm3,and F(000) = 764.The structure was solved by direct methods and refined by full-matrix least-squares method to the final R = 0.0556 and wR = 0.1499(I > 2σ(I)).There exist several supramolecular motifs in the crystal structure.The compound exhibits strong photoluminescence in the solid state at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号