首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42250篇
  免费   10057篇
  国内免费   7853篇
化学   18595篇
晶体学   6117篇
力学   5293篇
综合类   1614篇
数学   8576篇
物理学   19965篇
  2024年   221篇
  2023年   1056篇
  2022年   1146篇
  2021年   1237篇
  2020年   873篇
  2019年   1587篇
  2018年   1209篇
  2017年   1646篇
  2016年   1854篇
  2015年   2058篇
  2014年   3228篇
  2013年   2638篇
  2012年   2544篇
  2011年   2865篇
  2010年   2745篇
  2009年   2885篇
  2008年   3389篇
  2007年   2376篇
  2006年   2449篇
  2005年   2039篇
  2004年   2252篇
  2003年   2631篇
  2002年   2429篇
  2001年   2103篇
  2000年   1626篇
  1999年   1107篇
  1998年   1252篇
  1997年   831篇
  1996年   849篇
  1995年   880篇
  1994年   719篇
  1993年   565篇
  1992年   617篇
  1991年   622篇
  1990年   501篇
  1989年   516篇
  1988年   162篇
  1987年   160篇
  1986年   85篇
  1985年   71篇
  1984年   42篇
  1983年   52篇
  1982年   32篇
  1981年   2篇
  1980年   1篇
  1979年   4篇
  1975年   1篇
  1959年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
钙钛矿/硅叠层太阳电池可以充分利用太阳光谱,提高光电转换效率.平面硅异质结太阳电池可以作为叠层电池的底电池,其性能直接影响叠层电池的性能表现.采用传统反应热蒸发技术,在低温(170 ℃)条件下制备了掺锡氧化铟薄膜,并在170 ℃的氧气氛围下后退火处理,对ITO薄膜的特性进行了详细的表征和分析.结果表明:后退火工艺改善了ITO的结晶特性,使得材料的光学特性和电学特性得到明显提高,将其应用于平面硅异质结太阳电池,短路电流密度得到极大提高,尤其红外光响应改善明显.引入MgF2薄膜作为减反射层,进一步增强了电池的光响应,转换效率达到19.04;.  相似文献   
12.
采用激光分子束外延技术在Al2O3衬底上成功外延生长了ZnS薄膜.用X射线衍射、扫描电子显微镜和光致发光谱表征了衬底温度对薄膜结构、形貌和光学特性的影响.结果表明所生长的ZnS薄膜为闪锌矿,具有(111)择优长向,随衬底温度的升高,X射线衍射峰的半高宽先减小后增大,在衬底温度为300℃时,半高宽最窄.薄膜结构致密,表面不平整度随衬底温度的升高而增大.薄膜的带隙随衬底温度的升高出现蓝移,可见光区域透射率最高达到98;,在360 nm激发波长下,观测到402 nm和468 nm两个发光带,衬底温度为300℃时,发光最强.  相似文献   
13.
氧化铝晶体是一种优良的光学透明窗口材料,更是地球内部的重要组成物质.利用气炮加载结合冲击光谱测量,不仅能够获得其发光特征,并且根据光谱分布特征得到高压结构相变信息.在自主搭建的冲击光谱动态测试平台上,结合多通道辐射高温计以及ICCD瞬态光谱测试技术在40~120 GPa的压力区间,研究了c切向氧化铝晶体的辐射发光效应.在可见光波段400~700 nm区间获得了氧化铝晶体的发光光谱和辐射温度结果,证实了光谱的结构特征和表观温度值与该压力下氧化铝的结构相变存在明显的关联性.  相似文献   
14.
以尿素为氮源,用溶胶-凝胶法制备了氮掺杂纳米氧化锌(N-ZnO),用FT-IR、UV-Vis、PL、XRD和XPS对N-ZnO的微观结构和性能进行了表征.以2,4,6-三氯苯酚(TCP)作为目标污染物,研究了N-ZnO在可见光下的催化性能.结果表明:掺杂后,N-ZnO的氧空位缺陷增多,N-ZnO光响应波长向可见光区移动,掺杂摩尔比为0.25时,N-ZnO的光催化性能最好(91;).  相似文献   
15.
通过熔融共混挤出法制备了不同乙烯-丙烯酸甲酯-甲基丙烯酸缩水甘油酯(EMAG)含量下的聚乳酸(PLA)/EMAG共混物,考察共混体系中EMAG与PLA基体之间的相互作用,研究了PLA/EMAG共混物的结晶性能、力学性能、熔体指数、加工性能以及热稳定性.表征结果显示:EMAG中的环氧基团与PLA的端羟基或端羧基发生化学反应,形成反应性共混体系,PLA/EMAG共混物的韧性较纯PLA有大幅提高,在EMAG含量为15;时达到最大.  相似文献   
16.
中空介孔SiO2由于中空多孔的结构而常用作功能材料的基底.将中空介孔SiO2进行官能团修饰,并应用为荧光传感材料是中空介孔SiO2一个重要的研究领域.本论文采用聚丙烯酸(PAA)为中空模板,聚醚F127为造孔剂,正硅酸乙酯(TEOS)为硅源,氨水为催化剂在乙醇体系中制备了中空介孔SiO2纳米球.系统研究了搅拌速度和聚醚F127引入量对中空介孔SiO2纳米球形貌及比表面积的影响.通过透射电镜、N2-等温吸附脱附曲线等表征说明该合成方法具有很好的普适性,通过调节F127的引入可以实现对比表面积的有效控制.通过氨基化、席夫碱反应进行荧光修饰,进一步研究表明荧光修饰后的中空介孔SiO2纳米球在水溶液中能够实现对Al3+的有效检测,检测限为1.19×10 -7M.  相似文献   
17.
以陶瓷基功能材料载体为研究对象,按照其生产工艺配方,研究了纤维种类(莫来石、氧化铝、氧化锆)及其添加量对陶瓷基功能材料载体性能的影响.在相同实验条件且不影响其功能化参数前提下,将其与未添加纤维的空白试样力学性能进行对比.结果表明,试样经1200℃烧成后,相比莫来石与氧化铝纤维增强的陶瓷基功能材料载体,氧化锆纤维的增强效果最好.当氧化锆纤维的添加量为0.8 wt;时,试样的吸水率和气孔率均较低,分别为2.0;、4.0;,相比空白对比试样抗折强度增强了42.4;.  相似文献   
18.
常会  范文娟 《人工晶体学报》2018,47(11):2361-2369
使用改良的hummers法制备出的氧化石墨烯为载体,采用共沉淀法制备出磁性CoFe2O4/氧化石墨烯(MGO),再使用三乙烯四胺(TETA)对磁性CoFe2O4/氧化石墨烯进行氨基功能化,制备出氨基功能化磁性CoFe2O4/氧化石墨烯吸附剂.采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FT-IR)和扫描电子显微镜(SEM)对TETA-MGO的物相、化学组成和微观形貌进行表征,以TETA-MGO作为吸附剂去除电镀废水中Cr(Ⅵ),探讨吸附性能和吸附机理,分析TETA-MGO在外加磁场下的液固分离和再生吸附性能.结果表明纳米级立方尖晶石相磁性CoFe2O4均匀生长于氧化石墨烯的表面和片层之间,TETA通过C-N键与磁性氧化石墨烯(MGO)相连,氨基功能化成功,活性吸附位点增点.室温下,pH =2时吸附效果最佳,吸附120 min时达到吸附平衡,平衡吸附量约为48.66 mg·g-1,TETA-MGO对Cr(Ⅵ)的吸附动力学和吸附热力学可分别使用拟二级动力学模型和Langmuir等温吸附模型描述,吸附过程主要属于化学吸附控制的单分子层吸附,使用外加磁场可以对TETA-MGO实现简单的固液分离,TETA-MGO经过6次再生吸附后,对Cr(Ⅵ)的吸附量仅下降19.67;,说明具有良好的循环再生吸附能力.  相似文献   
19.
采用传统固相反应法制备了Ca0.9(NaCe)0.05Bi2 Nb2 O9铋层状无铅压电陶瓷.采用XRD、SEM、EDS及相关电学性能测试系统表征了样品的晶体结构、断面形貌、元素组成以及介电、压电、铁电等性能,探究不同烧结温度对于陶瓷性能的影响.结果表明:当烧结温度为1150℃时,样品的晶体结构单一均匀,呈现片层状结构,致密性较好,压电常数高达17 pC/N,介电损耗仅为0.42;,居里温度为908℃,并且具有很好的温度稳定性,说明固相反应法制备的Ca0.9(NaCe)0.05Bi2Nb2O9压电陶瓷最佳烧结温度为1150℃.  相似文献   
20.
以六水氯化镁和六次甲基四胺为原料,采用水热法合成四方体MgO,考察其对有机染料甲基橙和亚甲基蓝的吸附行为.通过TGA-DTA、SEM、XRD、N2-sorption和FT-IR等手段表征样品.结果表明,原料浓度、温度和表面活性剂对四方体MgO结构的形成影响较小,而反应时间的延长有助于有序结构的组装.温度170℃、时间24h、MgCl2·6H2O与C6H12N4浓度比为1∶2和表面活性剂PVP是制备四方体MgO的最佳条件.在溶液浓度10mg · L-1的单一吸附实验过程中,四方体MgO对甲基橙和亚甲基蓝的去除率分别为91.3;和22.3;,吸附过程均为单层吸附且符合Langmuir等温吸附模型和伪二级吸附动力学方程.在溶液浓度40 mg·L-1、甲基橙和亚甲基蓝浓度比3∶1的混合溶液吸附过程中,四方体MgO对甲基橙和亚甲基蓝的去除率分别为80.1;和97.9;.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号