首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   454篇
  免费   24篇
  国内免费   1篇
化学   21篇
力学   78篇
数学   10篇
物理学   370篇
  2023年   25篇
  2022年   32篇
  2021年   49篇
  2020年   43篇
  2019年   3篇
  2018年   21篇
  2017年   17篇
  2016年   36篇
  2015年   16篇
  2014年   53篇
  2013年   16篇
  2012年   16篇
  2011年   15篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   4篇
  2006年   19篇
  2005年   9篇
  2004年   10篇
  2003年   11篇
  2002年   8篇
  2001年   3篇
  2000年   9篇
  1999年   5篇
  1998年   3篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有479条查询结果,搜索用时 15 毫秒
11.
12.
The degradation of methylparaben (MP) through 20 kHz ultrasound coupled with a bimetallic Co-Fe carbon xerogel (CX/CoFe) was investigated in this work. Experiments were performed at actual power densities of 25 and 52 W/L, catalyst loadings of 12.5 and 25 mg/L, MP concentrations between 1 and 4.2 mg/L and initial pH values between 3 and 10 in ultrapure water (UPW). Matrix effects were studied in bottled water (BW) and secondary treated wastewater (WW), as well as in UPW spiked with bicarbonate, chloride or humic acid. The pseudo–first order kinetics of MP degradation increase with power and catalyst loading and decrease with MP concentration and matrix complexity; moreover, the reaction is also favored at near–neutral conditions and in the presence of dissolved oxygen. The contribution of the catalyst is synergistic to the sonochemical degradation of MP and the extent of synergy is quantified to be >45%. This effect was ascribed to the ability of CX/CoFe to catalyze the dissociation of hydrogen peroxide, formed through water sonolysis, to hydroxyl radicals. Experiments in UPW spiked with an excess of tert-butanol (radical scavenger), sodium dodecyl sulfate or sodium acetate (surfactants) led to substantially decreased rates (i.e. by about 8 times), thus implying that the liquid bulk and the gas-liquid interface are major reaction sites. The stability of CX/CoFe was shown by performing reusability cycles employing magnetic separation of the catalyst after the treatment stage. It was found that the CX/CoFe catalyst can be reused in up to four successive cycles without noteworthy variation of the overall performance of the sonocatalytic process.  相似文献   
13.
When liquids flow in the pipelines, the onset of cavitation can be characterized by a variant of the Euler number known as the cavitation number (CN), which is based on the velocity and denoted by C in this paper. Conventionally, cavitation is considered to be induced when C ~ 1. However, experimental observations and several pipe bursts indicate that the CN may incorrectly predict the onset of cavitation. For example, when leakage occurs in the pipeline or a valve in the pipeline is opened, the resultant pressure loss generates a dynamic pressure wave with a small amplitude, which may lead to bubble formation, even though C ~ 1 is not satisfied. Hence, this paper proposes another CN based on the amplitude of the generated dynamic pressure wave, rather than the velocity, for ascertaining the onset of cavitation. The validity of the proposed CN was verified through experiments and a case study. The results indicated that the proposed CN can be effectively used for cavitation prediction induced by pressure fluctuations and for investigating phenomena such as pressure fluctuation, leakage, and corrosion in liquid pipelines, tanks, and pressure vessels, as well as the safety design of liquefied natural gas tanks and tankers.  相似文献   
14.
Visualisation and Large Eddy Simulations (LES) of cavitation inside the apparatus previously developed by Franc (2011) for surface erosion acceleration tests and material response monitoring are presented. The experimental flow configuration is a steady-state closed loop flow circuit where pressurised water, flowing through a cylindrical feed nozzle, is forced to turn 90° and then, move radially between two flat plates towards the exit of the device. High speed images show that cavitation is forming at the round exit of the feed nozzle. The cavitation cloud then grows in the radial direction until it reaches a maximum distance where it collapses. Due to the complexity of the flow field, direct observation of the flow structures was not possible, however vortex shedding is inferred from relevant simulations performed for the same conditions. Despite the axisymmetric geometry utilized, instantaneous pictures of cavitation indicate variations in the circumferential direction. Image post-processing has been used to characterize in more detail the phenomenon. In particular, the mean cavitation appearance and the cavity length have been estimated, showing good correlation with the erosion zone. This also coincides with the locations of the maximum values of the standard deviation of cavitation presence. The dominant frequency of the ‘large-scale’ cavitation clouds has been estimated through FFT. Cloud collapse frequencies vary almost linearly between 200 and 2000 Hz as function of the cavitation number and the downstream pressure. It seems that the increase of the Reynolds number leads to a reduction of the collapse frequency; it is believed that this effect is due to the agglomeration of vortex cavities, which causes a decrease of the apparent frequency. The results presented here can be utilized for validation of relevant cavitation erosion models which are currently under development.  相似文献   
15.
A circular cylindrical shell loaded by one or two fluids and responding to an external shock wave is analyzed in the context of the possible inception of shock-induced cavitation. Several scenarios of fluid contact are considered including a submerged evacuated shell and a submerged fluid-filled shell for three different combinations of the parameters of the internal and external fluids. A semi-analytical shell-shock interaction model is employed in order to predict the regions of the fluids where cavitation is likely to occur, and the respective cavitation development is hypothesized about. The most interesting and practically important finding is that when fluid is present both inside and outside the shell, there exist conditions when cavitation is expected to occur in both the internal and external fluid, resulting in a particularly complex and violent structural re-loading occurring upon the collapse of the respective cavitation regions. The inception of cavitation in the internal fluid alone and in the external fluid alone is also possible. The findings are summarized in a manner that is suitable for use at the pre-design stage as a guide for preliminary assessment of the possibility of shock-induced cavitation in fluid-interacting industrial systems.  相似文献   
16.
We report a study on two methods that enable spatial control and induced cavitation on targeted microbubbles (MBs). Cavitation is known to be present in many situations throughout nature. This phenomena has been proven to have the energy to erode alloys, like steel, in propellers and turbines. It is recently theorized that cavitation occurs inside the skull during a traumatic-brain injury (TBI) situation. Controlled cavitation methods could help better understand TBIs and explain how neurons respond at moments of trauma. Both of our approaches involve an ultrasonic transducer and bio-compatible Polycaprolactone (PCL) microfibers. These methods are reproducible as well as affordable, providing more control and efficiency compared to previous techniques found in literature. We specifically model three-dimensional spatial control of individual MBs using a 1.6 MHz transducer. Using a 100 kHz transducer, we also illustrate induced cavitation on an individual MB that is adhered to the surface of a PCL microfiber. The goal of future studies will involve characterization of neuronal response to cavitation and seek to unmask its linkage with TBIs.  相似文献   
17.
18.
《Ultrasonics sonochemistry》2014,21(5):1858-1865
One of the uses of ultrasound in dentistry is in the field of endodontics (i.e. root canal treatment) in order to enhance cleaning efficiency during the treatment. The acoustic pressures generated by the oscillation of files in narrow channels has been calculated using the COMSOL simulation package. Acoustic pressures in excess of the cavitation threshold can be generated and higher values were found in narrower channels. This parallels experimental observations of sonochemiluminescence. The effect of varying the channel width and length and the dimensions and shape of the file are reported. As well as explaining experimental observations, the work provides a basis for the further development and optimisation of the design of endosonic files.  相似文献   
19.
An experimental study to evaluate the dynamic performance of three different types of cavitation bubbles is conducted. An ultrasonic transducer submerged into the working fluids of a scroll expander is utilised to produce cavitation bubbles and a high speed camera device is used to capture their behaviour. Three critical regions around the ultrasonic source, between the source and the solid boundary, and across the solid boundary were observed. Experimental results revealed that refrigerant bubbles sustain a continuous oscillatory movement, referenced as “wobbling effect”, without regularly collapsing. Analytical results indicate the influence of several factors such as surface tension/viscosity ratio, Reynolds number and Weber number which interpret that particular behaviour of the refrigerant bubbles. Within the refrigerant environment the bubbles obtain large Reynolds numbers and low Weber numbers. In contrast, within the lubricant and the water environment Weber number is significantly higher and Reynolds number substantially lower. The bubble radius and velocity alterations are accurately calculated during the cavitation process. Lubricant bubbles achieve the highest jet velocity while refrigerant bubbles having the lowest jet velocity are not considered as a destructive mean of cavitation for scroll expander systems.  相似文献   
20.
We study the possibility of cavitation in the non-conformal N=2?SU(N) theory which is a mass deformation of N=4SU(N) Yang-Mills theory. The second order transport coefficients are known from the numerical work using AdS/CFT by Buchel and collaborators. Using these and the approach of Rajagopal and Tripuraneni, we investigate the flow equations in a (1+1)-dimensional boost invariant set up. We find that the string theory model does not exhibit cavitation before phase transition is reached. We give a semi-analytic explanation of this finding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号