首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   975篇
  免费   97篇
  国内免费   99篇
化学   814篇
晶体学   12篇
力学   125篇
综合类   3篇
数学   22篇
物理学   195篇
  2024年   1篇
  2023年   10篇
  2022年   18篇
  2021年   30篇
  2020年   41篇
  2019年   24篇
  2018年   24篇
  2017年   38篇
  2016年   41篇
  2015年   39篇
  2014年   60篇
  2013年   92篇
  2012年   61篇
  2011年   69篇
  2010年   52篇
  2009年   64篇
  2008年   63篇
  2007年   52篇
  2006年   53篇
  2005年   51篇
  2004年   47篇
  2003年   44篇
  2002年   36篇
  2001年   25篇
  2000年   29篇
  1999年   20篇
  1998年   17篇
  1997年   17篇
  1996年   11篇
  1995年   10篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1171条查询结果,搜索用时 15 毫秒
51.
Poly(N-isopropylacrylamide) (PNIPAAm)-based thermo-responsive surfaces can switch their wettability (from wettable to non-wettable) and adhesion (from sticky to non-sticky) according to external temperature changes. These smart surfaces with switchable interfacial properties are playing increasingly important roles in a diverse range of biomedical applications; these controlling cell-adhesion behavior has shown great potential for tissue engineering and disease diagnostics. Herein we reviewed the recent progress of research on PNIPAAm-based thermo-responsive surfaces that can dynamically control cell adhesion behavior. The underlying response mechanisms and influencing factors for PNIPAAm-based surfaces to control cell adhesion are described first. Then, PNIPAAm-modified two-dimensional flat surfaces for cell-sheet engineering and PNIPAAm-modified three-dimensional nanostructured surfaces for diagnostics are summarized. We also provide a future perspective for the development of stimuli-responsive surfaces.  相似文献   
52.
53.
船舶由于在航行时受到各种阻力,消耗了大量能量,增加了航行成本。船舶水下阻力的来源可以大致分为船体阻力和生物质附加阻力。本文基于对阻力和生物质黏附形成过程的分析,介绍了水下减阻领域的进展突破,总结了具有减阻、抗污性质的涂层研究情况,从超疏水、超亲水减阻材料和自抛光防污涂料、低表面能抗黏附材料、防污剂等方面,对其中相关的科学问题和解决方法进行了综述。  相似文献   
54.
聚合物材料表面金属化在通讯、电子、航空航天领域具有重要应用. 化学镀铜是聚合物材料表面金属化的主要技术之一. 聚合物材料表面的前处理直接影响化学镀铜层的结合力及镀层平整度. 本综述详细介绍非导电聚合物材料的种类、组成以及性能, 并概述其表面化学镀铜前处理的研究进展.  相似文献   
55.
Background: The study examined the oral microbiota, physiological and immunological changes in patients using thermoplastic retainers during three months of use. Methods: The study included several steps. Firstly, 10 swabs were collected from the buccal and palatal surfaces of the teeth of the patients, approximately 2 mL of saliva was collected from the same patients and 2 mL of saliva was collected from 10 healthy people to measure the pH and secretory IgA level. This was followed by the isolation and identfication of the bacterial isolates in the patient samples. Then, isolate susceptibility toward chlorhexidine (CHX) and their adhesion ability to thermoplastic retainer surfaces was measured. In addition to that the study estimated the numbers of Lactobacillus and Streptooccus mutans colonies during three months and finally, a comparsion of pH acidity and IgA level between the patients and healthy people was performed. The results showed the predominant bacteria during the three months were Lactobacillus spp. and Streptococcus spp. followed by different rates of other bacteria. Raoultella ornithinolytica showed more resistance to CHX while Lactobacillus spp. showed more sensitivity. Streptococcus mutans colony levels were higher than Lactobacillus spp. colonies during the three months, also S. mutans had the highest value in adherence to retainer thermoplastic. Finally, pH acidity showed a highly significant difference (p ≤ 0.05) in the third month, like IgA levels (p ≤ 0.05). Conclusions: According to the results obtained from the current study, the researchers noted that the thermoplastic retainers helped change the oral cavity environment.  相似文献   
56.
Besides human red blood cells (RBC), a standard model used in AFM-single cell force spectroscopy (SCFS), little is known about apparent Young’s modulus (Ea) or adhesion of animal RBCs displaying distinct cellular features. To close this knowledge gap, we probed chicken, horse, camel, and human fetal RBCs and compared data with human adults serving as a repository for future studies. Additionally, we assessed how measurements are affected under physiological conditions (species-specific temperature in autologous plasma vs. 25 °C in aqueous NaCl solution). In all RBC types, Ea decreased with increasing temperature irrespective of the suspension medium. In mammalian RBCs, adhesion increased with elevated temperatures and scaled with reported membrane sialic acid concentrations. In chicken only adhesion decreased with higher temperature, which we attribute to the lower AE-1 concentration allowing more membrane undulations. Ea decreased further in plasma at every test temperature, and adhesion was completely abolished, pointing to functional cell enlargement by adsorption of plasma components. This halo elevated RBC size by several hundreds of nanometers, blunted the thermal input, and will affect the coupling of RBCs with the flowing plasma. The study evidences the presence of a RBC surface layer and discusses the tremendous effects when RBCs are probed at physiological conditions.  相似文献   
57.
The ordinary organic coatings on aluminum alloy usually encounter a problem of low adhesion to the substrate, which results in destruction and failure of the long-term protective performance of the anticorrosion systems. The surface modification of aluminum alloy is able to enhance the adhesion of organic coating on aluminum alloys, and to improve their protective performance. In this work, a combined surface modification of anodic oxidation and mussel adhesion protein/CeO2/3-aminopropyltriethoxysilane composite film (MCA) was developed on the aluminum alloy. The adhesion of modified polyurethane coated on the treated aluminum alloy and its corrosion protective performance were evaluated comprehensively by using contact angle, adhesion strength, electrochemical impedance spectroscopy (EIS), and scanning reference electrode technique (SRET). The measurements of EIS and SRET demonstrated that the MCA composite film on anodic oxidized Al possessed self-healing function and provided effective protection against early corrosion of aluminum alloy. The pull-off test showed that both anodic oxidation treatment and MCA composite film modification were able to increase the adhesion of modified polyurethane coating on aluminum alloy, and their combined action were supposed to remarkably enhance the adhesion strength up to 17.1 MPa. The reason for the improvement of adhesion was that the anodic oxidation treatment and MCA composite film modification could improve the surface roughness of aluminum alloy, and enhance the surface wettability and surface polarity, which is beneficent to enhance the bonding of the modified polyurethane coating to aluminum alloy surface. The EIS results showed that no any corrosion occurred for the modified polyurethane coating on the treated aluminum alloy during 65 d immersion in 3.5wt.% NaCl solution. The impedance value in low frequency range of the modified polyurethane coating always maintained at a high order of magnitude on the aluminum alloy treated by anodic oxidation and MCA composite film modification, showing an excellent protective performance of the coating system. The evaluation of Neutral Salt Spray (NSS) indicated that the modified polyurethane coating on the treated aluminum alloy owned superior corrosion protection performance, and the adhesion strength remained 13.1 MPa and no any corrosion was found at the scratch locations even after 1200 h of salt spray testing. It was concluded that combination of anodic oxidation and MCA composite film were capable of significantly improving the adhesion of modified polyurethane coating on aluminum alloy and providing long-term effective corrosion protection for aluminum alloy. © 2021 Authors. All rights reserved.  相似文献   
58.
用于高性能涂料的无定型聚芳醚腈酮共聚物的制备及性能   总被引:1,自引:0,他引:1  
通过亲核缩聚反应由酚酞、4,4′-二氟二苯酮和2,6′-二氯苯腈制备了一系列不同腈基含量的无定型聚芳醚腈酮共聚物。通过FT-IR、1 H-NMR、13 C-NMR、DSC、TGA等表征了聚合物的结构与性能。研究表明:随着腈基含量的提高,聚合物的玻璃化转变温度升高,在马口铁板上的附着力逐渐提高;该聚合物在有机溶剂中具有良好的可溶性和成膜性,聚合物涂层具有优异的综合性能。  相似文献   
59.
Addition‐cure silicone resin is considered as a good choice for light emitting diodes (LEDs); however, it has very poor adhesion to the substrate, which limits its practical application. A novel polysiloxane with self‐adhesion ability and higher refractive index for the encapsulating of high‐power LEDs is prepared and characterized. This polysiloxane containing vinyl groups, phenyl groups, and epoxy groups was synthesized by a sol‐gel condensation process from methacryloxy propyl trimethoxyl silane, γ‐(2,3‐epoxypropoxy)propytrimethoxysilane, and diphenylsilanediol under the catalysis of an anion exchange resin. Then, the resin‐type encapsulation material was prepared by hydrosilylation of methylphenyl hydrogen‐containing silicone resin and the newly synthesized polysiloxane material. The novel polysiloxane was characterized by 1H‐NMR and Fourier transform infrared spectroscopy. On the basis of higher refractive index, higher transparency, excellent thermal stability, and appropriate hardness, as well as good adhesive strength between the encapsulating material and the LED lead frame (polyphthalamide), the curable silicone resin‐type encapsulation material can be used as an encapsulant for LEDs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
60.
In the three‐dimensional (3D) extracellular matrix (ECM), the influence of nanofiber chirality on cell behavior is very important; the helical nanofibrous structure is closely related to the relevant biological events. Herein, we describe the use of the two enantiomers of a 1,4‐benzenedicarboxamide phenylalanine derivative as supramolecular gelators to investigate the influence of the chirality of nanofibers on cell adhesion and proliferation in three dimensions. It was found that left‐handed helical nanofibers can increase cell adhesion and proliferation, whereas right‐handed nanofibers have the opposite effect. These effects are ascribed to the mediation of the stereospecific interaction between chiral nanofibers and fibronectin. The results stress the crucial role of the chirality of nanofibers on cell‐adhesion and cell‐proliferation behavior in 3D environments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号