首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   26篇
  国内免费   43篇
化学   51篇
晶体学   1篇
力学   15篇
综合类   1篇
数学   6篇
物理学   71篇
  2024年   2篇
  2023年   3篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   15篇
  2018年   3篇
  2017年   4篇
  2016年   8篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   8篇
  2010年   9篇
  2009年   12篇
  2008年   3篇
  2007年   6篇
  2006年   8篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
21.
无机矿物作为页岩气吸附的重要载体,其表面性质对甲烷吸附能力有着重要影响,而润湿性作为固体重要表面性质之一,对矿物气体吸附能力的影响不可忽视.文章以蒙脱石和石英作为研究对象,通过对矿物表面甲基化(-CH3)和羟基化(-OH)处理来改变其润湿性,以探究无机矿物表面润湿性对甲烷吸附能力的影响.采用分子动力学方法研究矿物体系的润湿性,用接触角对润湿性进行定量表征,并构建纳米狭缝,结合巨正则蒙特卡罗方法模拟润湿性改变前后,CH4在矿物中的吸附变化.研究结果表明,水滴在羟基化矿物表面迅速破裂并铺展在矿物表面,而在甲基化表面铺展程度较小,普遍呈半球形.羟基化蒙脱石和石英表面的润湿接触角分别为12.7°和26.5°,均小于其甲基化表面接触角62.5°和85.7°.甲基化矿物甲烷吸附量均高于其羟基化,气体几乎大都以吸附状态位于孔隙壁面,随着矿物亲水性的减弱,其对甲烷吸附能力增强.  相似文献   
22.
顾海鹏  洪华杰  范纪红 《应用光学》2019,40(6):1126-1138
当前的光电侦察领域设备不断地向轻、小型化发展,而传统变焦光学系统的体积与质量往往达不到微小型光电侦察平台的载荷要求,因此小型无人机等侦查平台只能搭载定焦镜头,制约了分辨率与侦查距离的提升,限制了侦查能力。液态透镜技术利用单片透镜即可实现透镜焦距的调节,大大减小了光学系统的体积,且其变焦响应速度快、变焦范围大,由液态透镜组合的光学系统可以在固定的小体积内实现快速变焦,在军民领域都有广阔的应用前景。该文对前人的理论基础与研究方法进行了调研与综述,简述了液态透镜的5种基本原理,并分析了各自的特点,分别介绍了国内外液态透镜的研究现状,指出了不同液态透镜的优缺点及未来的发展与研究方向。  相似文献   
23.
以小龙潭电厂燃煤飞灰及其不同粒径范围的分级灰为对象,采用X射线荧光光谱、X射线衍射、离子色谱、Zeta电位、扫描电镜等实验方法研究了飞灰的物理化学特征.同时采用沉降实验、表面张力实验研究了三种不同润湿剂对飞灰的润湿性能.研究发现,溶液对飞灰的润湿能力不仅取决于其气液界面张力,还与飞灰的组成、表面电位以及形貌特征密切相关.亲水性物质含量的增加,颗粒表面电荷与润湿剂分子间的静电吸引,颗粒表面的棱角孔隙等均可以促进其润湿;温度越高飞灰润湿性能越好,且温度对飞灰润湿过程影响较大,温度较高(60℃)时润湿剂种类及浓度对飞灰润湿过程的影响不明显.  相似文献   
24.
The inter-layer energy transfer in a bi-layer InGaAs/GaAs quantum dot structure with a thick GaAs barrier is studied using temperature-dependent photoluminescence. The abnormal enhancement of the photoluminescence of the QDs in the layer with a larger amount of coverage considering the resonant Forster energy transfer between the at 110K is observed, which can be explained by wetting layer states at elevated temperatures.  相似文献   
25.
A stationary substrate can suspend only small pendant drops even with excellent wetting ability because of gravity. We report the suspension of large pendant water drops by a copper substrate that vibrates ultrasonically with a frequency of 22 kHz. The mass of the largest pendant drop suspended by the vibrating substrate reaches 1.1 g, which is 9 times that by the same stationary substrate. The pendant drop deforms drasticaJly and quickly at both the beginning and the end of the vibration procedure. As the vibration power increases, the contact area between the drop and substrate expands and the drop height shrinks accordingly. Theoretical analysis indicates that the Bernoulli pressure induced by ultrasonic vibration may contribute strongly to enhancing the suspensibility of pendant drops.  相似文献   
26.
利用双光束干涉法对点接触区乏脂润滑成膜特性规律以及接触区附近润滑剂的微观迁移特性进行了观测.在试验条件下,接触区会经历充分润滑—乏脂—沉积膜润滑—分离油润滑等润滑状态.借助原子力显微镜,探测到沉积膜是润滑脂的稠化剂被碾压破碎而沉积在滚压轨道表面的一层纳米级颗粒薄膜;而分离油是在剪切过程中润滑脂内逐渐释放基础油.试验初始,接触区周围的润滑脂池因乏脂而迅速消失,但分离油会逐渐形成"第二相油池"以实现回流补给.沉积膜增大了基础油在滚动轨道表面的接触角,阻碍回流补给,但其会随运动逐渐磨损,此后分离油将进入接触区补充润滑膜.初步发现,当分离油不充足时,沉积膜有利于保护润滑轨道.  相似文献   
27.
利用直流等离子体沉积技术制备了含氢类富勒烯碳膜(FLC),在工业级白油润滑条件下考察了FLC薄膜润湿性、摩擦学特性和白油运动黏度对整个固液复合润滑体系的影响。研究结果表明:在5~150 mm~2/s的考察范围内,白油的运动黏度越小,其对FLC薄膜的润湿性越好;随着运动黏度的增大,白油分子量增加且分子链变长,在薄膜表面油膜吸附增强,油膜厚度增加,FLC薄膜摩擦系数逐渐减小,于32 mm~2/s时达到最小值(0.114),随着黏度进一步增大,过高的运动黏度增加了黏性阻力和摩擦阻力,FLC薄膜摩擦系数反而上升;同时,FLC薄膜的磨损率随黏度增大而减小,当黏度超过26 mm~2/s之后,变化幅度趋缓。  相似文献   
28.
提出了一种微流控电调谐非机械空间光开关器件,该器件的基本形式为“光输入阵列+光交换空间+光输出阵列”的结构,采用“水/油/水”液体棱镜作为偏光控制单元.在特定电压范围(30~110 V)内,通过电润湿效应作用的液体棱镜光束偏转角可在约-15°~15°之间连续可调.由此可构造多种平面甚至立体光开关阵列.  相似文献   
29.
本文应用界面化学理论研究表面作用对分离式热管小螺旋管蒸发段管内流动和换热特性的影响。通过实验及分析,提出通过在一定范围内提高热管工作温度和添加润湿剂以降低水的表面张九提高管内壁的粗糙度以增强液膜的铺展性能。利用这两种方法可以有效地增强小螺旋管内壁面的润湿性能,从而提高管内换热性能.  相似文献   
30.
接触角及其在表面化学研究中的应用   总被引:34,自引:0,他引:34  
润湿是一种流体取代界面上另一种流体的界面现象,通常是指液体从固体表面取代气体的过程。如在干净玻璃板上加水,排走表面上的空气形成薄的水膜,即为铺展润湿,简称铺展,此过程的特点是原固气界面消失,气液界面扩大,并形成新的固液界面。将固体完全浸渍于液体中,固气界面消失,气液界面不变,形成新的固液界面,此过程为现润湿(浸湿)。液体与固体接触,气液和固气界面减小,形成固液界面的过程为沾湿。润湿过程涉及固体和液  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号