首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   135篇
  国内免费   71篇
化学   425篇
晶体学   12篇
力学   2篇
物理学   60篇
  2024年   5篇
  2023年   8篇
  2022年   32篇
  2021年   28篇
  2020年   69篇
  2019年   39篇
  2018年   47篇
  2017年   28篇
  2016年   57篇
  2015年   42篇
  2014年   38篇
  2013年   34篇
  2012年   23篇
  2011年   15篇
  2010年   10篇
  2009年   9篇
  2008年   3篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  1994年   1篇
排序方式: 共有499条查询结果,搜索用时 156 毫秒
61.
采用水热合成法,在Ti网上原位生长多孔层状Co_3O_4纳米片,并优化了电荷转移电阻。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产物的结构、形貌进行表征,及对电极的电化学性能进行测试。结果表明,材料是由排列良好的微米矩形二维薄片组成,且具有均匀的孔隙分布。这种独特的微纳米结构的超级电容器电极材料降低了电极的电荷转移电阻,增强了活性物质的结构稳定性,从而提高了电极的电化学性能,在电流密度为100 mA·g-1时,电极循环1 000次后,电容保持率为91.8%,电荷转移电阻(Rct)为0.29Ω。这些显著的超电容性能归因于合理的二维层状结构在柔性基底钛网上的生长及柔性Co_3O_4/Ti电极活性材料的高利用率。  相似文献   
62.
Nitrate is a raw ingredient for the production of fertilizer, gunpowder, and explosives. Developing an alternative approach to activate the N≡N bond of naturally abundant nitrogen to form nitrate under ambient conditions will be of importance. Herein, pothole‐rich WO3 was used to catalyse the activation of N≡N covalent triple bonds for the direct nitrate synthesis at room temperature. The pothole‐rich structure endues the WO3 nanosheet more dangling bonds and more easily excited high momentum electrons, which overcome the two major bottlenecks in N≡N bond activation, that is, poor binding of N2 to catalytic materials and the high energy involved in this reaction. The average rate of nitrate production is as high as 1.92 mg g?1 h?1 under ambient conditions, without any sacrificial agent or precious‐metal co‐catalysts. More generally, the concepts will initiate a new pathway for triggering inert catalytic reactions.  相似文献   
63.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   
64.
Single-crystal Au nanosheets and fcc gold nanocrystals of uniform size were synthesized by a novel and simple route. The results of field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) indicated the formation of the single-crystal structure of gold nanosheets and fcc nanocrystals. Energy-dispersive analysis of X-ray (EDAX) showed absorbance of cetyltrimethylammonium bromide (CTAB) molecules onto the surface of gold nanostructures. Moreover, zeta potential measurements showed that CTAB-coated nanostructures were positively charged and the zeta potential remained almost the same upon centrifugation and redispersion of the resulting nanostructures in methanol, confirming the high stability of the surfactant-protected nanocomposites. Evolution of the nanostructures during the reaction was monitored by TEM observations. The results indicated that the formation of the gold nanostructures followed a two-step mechanism with a bilayer CTAB structure on the surface of the gold nanostructures.  相似文献   
65.
In this paper, the gas-sensing properties of copper oxide porous nanosheets in amorphous and highly crystalline states were comparatively investigated on the premise of almost the same specific surface area, morphology and size. Unexpectedly, the results show that amorphous copper oxide porous nanosheets have much better gas sensing properties than highly crystalline copper oxide to a serious of volatile organic compounds, and the lowest detection limit (LOD) of the amorphous copper oxide porous nanosheets to methanal is even up to 10 ppb. By contrast, the LOD of the highly crystalline copper oxide porous nanosheets to methanal is 95 ppb. Experiments prove that the oxygen vacancies contained in the amorphous copper oxide porous nanosheets play a key role in improving gas sensitivity, which greatly improve the chemical activity of the materials, especially for the adsorption of molecules containing oxygen-groups such as methanal and oxygen.  相似文献   
66.
In this study, the synthesis of TaN nanosheets and their application in theranostic agents is reported. After coating polyethylene glycol (PEG) on the TaN nanosheets, the as-synthesized PEG-modified TaN nanosheets (TaN-PEG) show good stability and biocompatibility. Because of their high absorbance in the near-IR region, TaN-PEG can be utilized as photoacoustic imaging contrast agents for tumor imaging. Moreover, TaN-PEG has significant photothermal conversion performance, exhibiting effective laser-induced tumor ablation capability. The TaN-PEG possessing excellent photoacoustic contrast effect and photothermal properties thus have great promise in theranostic applications, especially imaging-guided cancer treatment.  相似文献   
67.
68.
The experimental achievement of phosphorene, which exhibits superior electronic, physical, and optical properties has spurred recent interest in other Group 15 elemental 2D nanomaterials such as arsenene, antimonene, and bismuthene. These unique and superior properties of the pnictogen nanosheets have spurred intensive research efforts and led to the discovery of their diversified potential applications; for instance, optical Kerr material, photonic devices, pnictogen-decorated microfibers, high-speed transistors, and flexible 2D electronics. Previous studies have mainly been dedicated to study the synthesis, properties, and applications of the heavy pnictogens nanosheets; however, the toxicological behaviour of these nanosheets has yet to be established. Herein, the cytotoxicity study of pnictogen nanosheets (As, Sb, and Bi) was conducted over 24 h of incubation with various concentrations of test materials and adenocarcinoma human lung epithelial A549 cells. After the treatment period, the remaining cell viabilities were obtained through absorbance measurements with WST-8 and MTT assays. These findings demonstrate that the toxicity of pnictogen nanosheets decreases down Group 15, whereby arsenic nanosheets are considered to be the most toxic, whereas bismuth nanosheets induce low cytotoxicity. The findings of this study constitute an important initial step towards enhancing our understanding of the toxicological effects of pnictogen nanosheets in light of their prospective commercial applications.  相似文献   
69.
Metal–organic framework (MOF) and covalent organic framework (COF) nanosheets are a new type of two-dimensional (2D) materials with unique design principles and various synthesis methods. They are considered ideal electrochemical devices due to the ultrathin thickness, easily tunable molecular structure, large porosity and other unique properties. There are two common methods to synthesize 2D MOF/COF nanosheets: bottom-up and top-down. The top-down strategy mainly includes ultrasonic assisted exfoliation, electrochemical exfoliation and mechanical exfoliation. Another strategy mainly includes interface synthesis, modulation synthesis, surfactant-assisted synthesis. In this Review, the development of ultrathin 2D nanosheets in the field of electrochemistry (supercapacitors, batteries, oxygen reduction, and hydrogen evolution) is introduced, and their unique dimensional advantages are highlighted.  相似文献   
70.
By controlling the electroplating time of solution containing Mn(Ac)2, the MnO2 nanosheets were self-assembled to the honeycomb structure and showed an excellent electrochemical performance in 1 mol/L Na2SO4 electrolyte. Via pairing with activated carbon as negative electrode, the capacitor could deliver a maximum energy density of 43.84 Wh/kg and a maximum power density of 6.62 kW/kg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号