首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《印度化学会志》2022,99(11):100773
In this work, the preparation of copper oxide (CuO) nanosheets by laser ablation in water was demonstrated. The optical, structural, stability, and morphological properties of CuO nanosheets were investigated using UV–Vis spectrophotometer, X-ray diffraction (XRD), scanning electron microscope (SEM), and zeta potential (ZP). The XRD results confirm the formation of crystalline (CuO) with a monoclinic phase. The optical energy gap of CuO nanosheets was found to be 2.2 eV at 300 k. The average thickness of the synthesized copper oxide nanosheets is 25 nm. Energy dispersive X-ray result confirms the formation of stoichiometric CuO. The zeta potential result confirms the synthesized CuO colloid is stable. Gram-positive bacteria are found to be more susceptible to CuO nanosheets than Gram-negative bacteria. The synthesized copper oxidenanosheets are tested for antibacterial activity against Gram (+ve) and Gram (-ve) bacteria stains. The results suggest that CuO NPS can give hydrogen atoms and remove the unstable electron from DPPH at a rate of 200 μg/ml than 12.50 μg/ml. The results demonstrate that the copper oxide nanosheets have an effective antioxidant. Furthermore, according to a cytotoxicity assay, when cancer cells are incubated with copper oxide nanosheets, they are unable to grow well. copper oxide nanosheets can induce apoptosis and suppress pancreatic cell proliferation.  相似文献   

2.
Copper-based monolithic aerogel was prepared by sol?Cgel method with inorganic salt as precursor, the polyacrylic acid as template and the propylene oxide as gelation agent. The as-prepared aerogel was calcined at 400?°C to remove the organic substances and obtain crystalline copper-oxide nanostructured materials (tenorite, JCPDS File No. 00-045-0937). The aerogels?? structural properties were characterized by the field emission scanning electron microscopy, the high resolution transmission electron microscopy, the X-ray diffraction (XRD), and the Brunauer-Emmett-Teller methods. The results indicate that the as-prepared copper-based aerogel shows a typical three-dimensional porous structure with a large surface areas about 587?m2/g. The XRD patterns show that the as-prepared copper-based aerogel belongs to amorphous materials. The phase transition from the amorphous to crystalline copper oxide occurs at 400?°C.  相似文献   

3.
Photocatalytic reactions, including hydrogen/oxygen generation, water splitting and hydrogen peroxide production, are regarded as a renewable and promising method to harvest and use solar energy. The key to achieving this goal is to explore efficient photocatalysts with high productivity. Recently, two‐dimensional (2D) polymeric carbon nitride nanosheets were reported as efficient photocatalysts toward various products because of their outstanding properties, such as high specific surface area, more reactive sites, the quantum effect in thickness and unique electronic properties. This minireview attempts to overview recent advances in the preparation, structure and properties of crystalline and amorphous carbon nitride nanosheets, and their applications in photocatalytic hydrogen/oxygen evolution, water splitting and hydrogen peroxide production. We also thoroughly discuss the effect of defects, dopants and composites on the photocatalytic efficiency of these carbon nitride nanosheets. Finally, we outlook the ongoing opportunities and future challenges for 2D carbon nitride nanosheets in the field of photocatalysis.  相似文献   

4.
《中国化学快报》2023,34(1):107197
The defect engineering in graphene plays a significant role for the application of gas sensors. In this work, we proposed an efficient method to prepare ultrasensitive gas sensors based on the porous reduced graphene oxide (PRGO). Photo-Fenton etching was carried out on GO nanosheets in a controlled manner to enrich their vacancy defects. The resulting porous graphene oxide (PGO) was then drop-coated on interdigital electrodes and hydrothermal reduced at 180 °C. Controllable reduction was achieved by varying the water amount. The gas sensor based on PRGO-5 min-6 h exhibited superior sensing and selective performance toward nitrogen dioxide (NO2), with an exceptional high sensitivity up to 12 ppm?1. The theoretical limit of detection is down to 0.66 ppb. The excellent performance could be mainly attributed to the typical vacancy defects of PRGO. Some residue carboxylic groups on the edges could also facilitate the adsorption of polar molecules. The process has a great potential for scalable fabrication of high-performance NO2 gas sensors.  相似文献   

5.
We demonstrate herein that single‐crystalline β‐cobalt hydroxide (β‐Co(OH)2) nanosheets can be successfully synthesized in large quantities by a facile hydrothermal synthetic method with aqueous cobalt nitrate as the cobalt source and triethylamine as both an alkaline and a complexing reagent. This synthetic method has good prospects for the future large‐scale production of single‐crystalline β‐Co(OH)2 nanosheets owing to its high yield, low cost, and simple reaction apparatus. Single‐crystalline porous nanosheets and nanorings of cobalt oxide (Co3O4) were obtained by a thermal‐decomposition method with single‐crystalline β‐Co(OH)2 nanosheets as the precursor. A probable mechanism of formation of β‐Co(OH)2 nanosheets, porous Co3O4 nanosheets, and Co3O4 nanorings was proposed on the basis of the experimental results.  相似文献   

6.
Rice husk is a cheap agro-based waste material, which harbors a substantial amount of silica in the form of amorphous hydrated silica grains. However, there have been no attempts at harnessing the enormous amount of amorphous silica present in rice husk and its room-temperature biotransformation into crystalline silica nanoparticles. In this study, we address this issue and describe how naturally deposited amorphous biosilica in rice husk can be bioleached and simultaneously biotransformed into high value crystalline silica nanoparticles. We show here that the fungus Fusarium oxysporum rapidly biotransforms the naturally occurring amorphous plant biosilica into crystalline silica and leach out silica extracellularly at room temperature in the form of 2-6 nm quasi-spherical, highly crystalline silica nanoparticles capped by stabilizing proteins; that the nanoparticles are released into solution is an advantage of this process with significant application and commercial potential. Calcination of the silica nanoparticles leads to loss of occluded protein and to an apparently porous structure often of cubic morphology. The room-temperature synthesis of oxide nanomaterials using microorganisms starting from potential cheap agro-industrial waste materials is an exciting possibility and could lead to an energy-conserving and economically viable green approach toward the large-scale synthesis of oxide nanomaterials.  相似文献   

7.
Homogenous thin films are preferable for high‐performance gas sensors because of their remarkable reproducibility and long‐term stability. In this work, a low‐temperature fabrication route is presented to prepare crack‐free and homogenous metal oxide periodic porous thin films by oxygen plasma irradiation instead of high temperature annealing by using a sacrificial colloidal template. Rutile SnO2 is taken as an example to demonstrate the validity of this route. The crack‐free and homogenous porous thin films are successfully synthesized on the substrates in situ with electrodes. The SnO2 porous thin film obtained by plasma irradiation is rich in surface OH groups and hence superhydrophilic. It exhibits a more homogenous structure and lower resistance than porous films generated by annealing. More importantly, such thin films display higher sensitivity, a lower detection threshold (100 ppb to acetone) and better durability than those that have been directly annealed, resulting in enhanced gas‐sensing performance. The presented method could be applied to synthesize other metal oxide homogenous thin films and to fabricate gas‐sensing devices with high performances.  相似文献   

8.
A series of CuO/Al(2)O(3)-ZrO(2) catalysts with Cu loadings varying from 1.0 to 20 wt % were prepared and characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), temperature-programmed desorption (TPD) of CO(2) and NH(3), electron spin resonance (ESR), and Brunauer-Emmett-Teller surface area measurements. The dispersion and metal area of copper were determined by the N(2)O decomposition method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings < 10 wt % and as a crystalline CuO phase at higher Cu loadings. ESR results suggest the presence of two types of copper species on the Al(2)O(3)-ZrO(2) support. TPR results suggest well-dispersed copper oxide species at low Cu loadings and crystalline copper oxide species at high Cu loadings. Well-dispersed copper oxide species were reduced more easily than large copper oxide species by H(2). The results of CO(2) TPD suggest that the basicity of the catalysts was found to increase with an increase of copper loading up to 5.0 wt % and decreases with a further increase of copper loading. The results of NH(3) TPD suggest that the acidity of the catalysts was found to decrease with an increase of copper loading up to 5.0 wt % and increases with a further increase of copper loading. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and correlated with the results of CO(2) TPD measurements and the dispersion of Cu on the Al(2)O(3)-ZrO(2) support.  相似文献   

9.
Amorphous oxides have attracted special attention as advanced electrocatalysts owing to their unique local structural flexibility and attractive electrocatalytic properties. With abundant randomly oriented bonds and surface-exposed defects (e.g., oxygen vacancies) as active catalytic sites, the adsorption/desorption of reactants can be optimized, leading to superior catalytic activities. Amorphous oxide materials have found wide electrocatalytic applications ranging from hydrogen evolution and oxygen evolution to oxygen reduction, CO2 electroreduction and nitrogen electroreduction. The amorphous oxide electrocatalysts even outperform their crystalline counterparts in terms of electrocatalytic activity and stability. Despite of the merits and achievements for amorphous oxide electrocatalysts, there are still issues and challenges existing for amorphous oxide electrocatalysts. There are rarely reviews specifically focusing on amorphous oxide electrocatalysts and therefore it is imperative to have a comprehensive overview of the research progress and to better understand the achievements and issues with amorphous oxide electrocatalysts. In this minireview, several general preparation methods for amorphous oxides are first introduced. Then, the achievements in amorphous oxides for several important electrocatalytic reactions are summarized. Finally, the challenges and perspectives for the development of amorphous oxide electrocatalysts are outlined.  相似文献   

10.
We demonstrate bulk synthesis of highly crystalline beta-gallium oxide tubes, nanowires, and nanopaintbrushes using molten gallium and microwave plasma containing a mixture of monatomic oxygen and hydrogen. Gallium oxide nanowires were 20-100 nm thick and tens to hundreds of micrometers long. Transmission electron microscopy (TEM) revealed the nanowires to be highly crystalline and devoid of any structural defects. Results showed that multiple nucleation and growth of gallium oxide nanostructures could easily occur directly out of molten gallium exposed to an appropriate composition of hydrogen and oxygen in the gas phase. These gallium oxide nanostructures should be of particular interest for optoelectronic devices and catalytic applications.  相似文献   

11.
Textile industries extensively use colorants, such as methylene blue, and if disposed off untreated, they contaminate the effluent streams, causing a severe impact on the environment and aquatic life. Photocatalytic degradation has been found as an inevitable approach to treat them. Herein, we decorated the copper oxide nanoparticles on graphene nanosheets during the reflux process. The resultant copper oxide/graphene nanocomposites were analyzed for structural and functional attributes. It was observed that on increasing the copper oxide contents, the z-average size of the resultant nanocomposites decreased. The X-ray diffraction analysis demonstrated the crystalline nature of the nanocomposite. The surface morphology of the copper oxide nanoparticles appeared to be spherical and that of the copper oxide/graphene composite somehow wrinkled. The infrared analysis indicated successful intercalation of precursors in the nanocomposite. The bandgap of copper oxide/graphene nanocomposites varied in the range of 1.03-1.30 eV, which indicated their effective photocatalytic activity. The results demonstrated that after 120 min of exposure, the methylene blue removal efficiency reached 94.0%, 92.2%, and 89.4%(mass fraction) on the copper oxide/graphene nanocomposite at copper oxide nanoparticles to graphene nanosheets ratios of 1:1, 1.5:1, and 2:1 (mass ratio), respectively. The photodegradation performance of the prepared nano-catalyst was found satisfactory even after five cycles.  相似文献   

12.
A series of copper catalysts supported on TiO2-ZrO2 with copper loading varying from 1.0 to 21.6 wt % were prepared by a wet impregnation method. The catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy, electron spin resonance (ESR), temperature programmed reduction (TPR), and Brunauer-Emmett-Teller specific surface area measurements. Copper dispersion and metal area were determined by N2O decomposition by the passivation method. XRD results suggest that the copper oxide is present in a highly dispersed amorphous state at copper loadings <16.8 wt % in the sample and as a crystalline CuO phase at higher Cu loadings. Copper dispersion increases with Cu loading up to 5.1 wt % and levels off at higher loadings. The XPS peak intensity ratios of Cu 2p(3/2)/Ti 2p(3/2) and Cu 2p(3/2)/Zr 3d(5/2) were compared with the copper dispersion calculated from N2O decomposition. ESR results suggest the presence of two types of copper species on the TiO2-ZrO2 support. TPR profiles reveal the presence of highly dispersed copper oxide at lower temperatures and bulk CuO at higher temperatures. The catalytic properties were evaluated for the vapor-phase dehydrogenation of cyclohexanol to cyclohexanone and related to the dispersion of Cu on TiO2-ZrO2.  相似文献   

13.
Preparation of porous materials from one‐dimensional polymers is challenging because the packing of polymer chains results in a dense, non‐porous arrangement. Herein, we demonstrate the remarkable adaptation of an amorphous, linear, non‐porous, flexible organic polymer into a three‐dimensional, highly porous, crystalline solid, as the organic component of a metal–organic framework (MOF). A polymer with aromatic dicarboxylic acids in the backbone functioned as a polymer ligand upon annealing with ZnII, generating a polymer–metal–organic framework (polyMOF). These materials break the dogma that MOFs must be prepared from small, rigid ligands. Similarly, polyMOFs contradict conventional polymer chemistry by demonstrating that linear and amorphous polymers can be readily coaxed into a highly crystalline, porous, three‐dimensional structure by coordination chemistry.  相似文献   

14.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

15.
Nanowall materials are ideal two-dimensional structures with high surface-to-volume ratios and open edge geometries. We first report on the growth and characterization of indium oxide nanowalls on transparent and conducting indium tin oxide substrates. The nanosheets that compose the nanowalls are single-crystalline and are approximately 8 nm in thickness. The density and the lateral dimensions of the nanosheets on the substrate can be controlled by the growth time. Adopting a bridgework-like strategy, we directly construct indium oxide nanowall gas sensors on the patterned indium tin oxide substrates. The pattern lines on the substrates are etched using transparent plastic adhesive tape as shadow mask, which is both simple and cheap in comparison with the conventional photolithography technique. The sensors exhibit fast response/recovery behavior and good reproducibility to NO2 gas under mild testing conditions, such as room temperature, ambient pressure, dry air background, and 1.5 V dc bias, and can achieve a detection limit as low as 50 ppb. We propose an assumption that the gas adsorption is composed of deep adsorption and probe adsorption to explain the interesting gas-sensing behavior of the indium oxide nanowalls. We suggest that the work reported herein, including the facile growth of indium oxide nanowalls, the bridgework-like strategy to directly construct electronic devices, and the high gas-sensing performance of the indium oxide nanowalls sensors, is a significant step towards the real applications of novel semiconductor nanostructures.  相似文献   

16.
多孔金属氧化物具有高比表面积、大孔径、特殊的形貌和结构特性,广泛应用于催化、锂离子电池、太阳能电池、气敏传感器等领域。金属有机骨架材料(MOFs)是一类具有周期性网络结构的新型多孔晶体材料,在气体存储、气体分离、催化等领域具有重要的应用价值。近年来,以MOFs为前驱体制备多孔碳和多孔金属氧化物成为MOFs应用领域一个新的研究热点。本文主要综述了以MOFs为前驱体制备的多孔金属氧化物和多孔金属氧化物/碳复合物在CO氧化、催化产氢、异丁烷脱氢、环已烯氧化、醇直接氧化为酯、醛氧化酰胺化反应、光催化降解有机物和氧还原反应等方面的应用。  相似文献   

17.
Porous anodic oxides generated on copper‐containing aluminium alloys are less regular than anodic oxides generated on pure aluminium. Specifically, a porous oxide morphology comprising layers of embryo pores, generated by a cyclic process of oxide film growth and oxygen evolution, is generally observed. In this work, the relation between the oxidation behaviour of copper during anodising and the specific porous oxide film morphology was investigated by electrochemical techniques, transmission electron microscopy and Rutherford backscattering spectroscopy (RBS). It was found that the anodising potential determines the oxidation behaviour of copper, and the latter determines the porous oxide morphology. At low voltage, relatively straight pores with continuous cell walls were obtained on Al? Cu alloys, but selective oxidation of aluminium atoms resulted in the occlusion of copper‐containing metallic nanoparticles in the anodic film. At higher potentials, copper oxidation promoted oxygen evolution within the barrier layer, and generation of a less regular film morphology. RBS, performed on Al? Cu alloy specimens, revealed a high volume fraction of copper atoms in the anodic films generated at low potentials and a reduced amount of copper atoms in the anodic oxide films generated at high potentials. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In incineration plants, nitric oxide (NO) and oxygen (O2) are the two major gaseous components, which degrade the mechanical properties of bag-filter media. Based on the experimental results of mass, dimension, morphology, crystallinity, fiber diameter, fiber orientation and fabric strength, changes in mechanical properties of polyphenylene sulfide (PPS) needled fabrics are related to two phenomena, i.e. the crystallization and the degradation of amorphous regions and some parts of crystalline regions. Both processes affect the fabric strength, competing with each other. The relation between strength and crystallinity is divided into two phases: (1) strength is dominated by crystallinity, and (2) strength is dependent on the defects in amorphous regions and some parts of crystalline regions. An increase in NO concentration has a potential to increase the deterioration rates of amorphous and crystalline phases but the crystallization process is unaffected. An increase in O2 concentration leads to enhancement of both crystallization and deterioration.  相似文献   

19.
Dye and heavy metal contaminants are mainly aquatic pollutants. Although many materials and methods have been developed to remove these pollutants from water, effective and cheap materials and methods are still challenging. In this study, highly porous hydroxyapatite/graphene oxide/chitosan beads (HGC) were prepared by a facile one-step method and investigated as efficient adsorbents. The prepared beads showed a high porosity and low bulk density. SEM images indicated that the hydroxyapatite (HA) nanoparticles and graphene oxide (GO) nanosheets were well dispersed on the CTS matrix. FT-IR spectra confirmed good incorporation of the three components. The adsorption behavior of the obtained beads to methylene blue (MB) and copper ions was investigated, including the effect of the contact time, pH medium, dye/metal ion initial concentration, and recycle ability. The HGC beads showed rapid adsorption, high capacity, and easy separation and reused due to the porous characteristics of GO sheets and HA nanoparticles as well as the rich negative charges of the chitosan (CTS) matrix. The maximum sorption capacities of the HGC beads were 99.00 and 256.41 mg g−1 for MB and copper ions removal, respectively.  相似文献   

20.
The formation of thick oxide films (ca. 100 monolayer equivalents at 2.3 V) on a gold anode was observed under steady-state polarization conditions in base. As reported by other authors for acid, the layer produced was of duplex character with a compact, largely anhydrous inner film at the metal surface, and a much thicker, porous, highly hydrated outer film at the oxide-solution interface. These deposits were readily distinguished, and quantified coulometrically, due to differences in reduction potential under cathodic sweep conditions. The onset of thick film growth occurred in a potential region where linear Tafel behaviour is observed for oxygen gas evolution on gold, and changes in oxygen coordination of cations in the outer region of the compact layer under these conditions is assumed to enhance the conversion of material in the outer region of the latter to the more hydrated form. As compared with acid, oxide growth was much slower (and reached a limiting value) in base, the outer film was reduced less readily and inhibition of oxygen gas evolution in the thick film region (at ca. 2.35 V) was observed. The results were accounted for by assuming increasing hydroxide ion coordination by cations in the hydrous layer with increasing pH — the more highly coordinated species being thermodynamically more stable but kinetically less capable of rearranging to form a crystalline product. The relationship between the hydrous film on gold and those produced on a wide range of other transition metals is briefly outlined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号