首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A facile and controllable in situ reduction strategy is used to create surface oxygen vacancies (OVs) on Aurivillius‐phase Sr2Bi2Nb2TiO12 nanosheets, which were prepared by a mineralizer‐assisted soft‐chemical method. Introduction of OVs on the surface of Sr2Bi2Nb2TiO12 extends photoresponse to cover the whole visible region and also tremendously promotes separation of photoinduced charge carriers. Adsorption and activation of CO2 molecules on the surface of the catalyst are greatly enhanced. In the gas‐solid reaction system without co‐catalysts or sacrificial agents, OVs‐abundant Sr2Bi2Nb2TiO12 nanosheets show outstanding CO2 photoreduction activity, producing CO with a rate of 17.11 μmol g?1 h?1, about 58 times higher than that of the bulk counterpart, surpassing most previously reported state‐of‐the‐art photocatalysts. Our study provides a three‐in‐one integrated solution to advance the performance of photocatalysts for solar‐energy conversion and generation of renewable energy.  相似文献   

2.
Bi2O3 nanosheets were grown on a conductive multiple channel carbon matrix (MCCM) for CO2RR. The obtained electrocatalyst shows a desirable partial current density of ca. 17.7 mA cm?2 at a moderate overpotential, and it is highly selective towards HCOOH formation with Faradaic efficiency approaching 90 % in a wide potential window and its maximum value of 93.8 % at ?1.256 V. It also exhibits a maximum energy efficiency of 55.3 % at an overpotential of 0.846 V and long‐term stability of 12 h with negligible degradation. The superior performance is attributed to the synergistic contribution of the interwoven MCCM and the hierarchical Bi2O3 nanosheets, where the MCCM provides an accelerated electron transfer, increased CO2 adsorption, and a high ratio of pyrrolic‐N and pyridinic‐N, while ultrathin Bi2O3 nanosheets offer abundant active sites, lowered contact resistance and work function as well as a shortened diffusion pathway for electrolyte.  相似文献   

3.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

4.
Perovskite nanosheets of HCa2?xSrxNb3O10 and HCa2Nb3?yTayO10 with controlled band‐edge potentials were prepared. They worked as highly efficient heterogeneous photocatalysts for H2 evolution from a water/methanol mixture under band‐gap irradiation. The activity was found to depend on the composition. The highest activity was obtained with HCa2Nb2TaO10 nanosheets, recording an apparent quantum yield of approximately 80 % at 300 nm, which is the highest value for a nanosheet‐based photocatalyst reported to date.  相似文献   

5.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low‐cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet‐supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2‐RGO materials are used for investigation of Li‐ion insertion properties, which show a reversible capacity of 235 mA h g?1 at 200 mA g?1 and 150 mA h g?1 at 1000 mA g?1 after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high‐rate performance, and strong cycling stability of the TiO2‐RGO composites.  相似文献   

6.
Three-layer Aurivillius ceramics Bi2SrCaNb2TiO12, Bi2Sr1.5Ca0.5Nb2TiO12, Bi2Sr2Nb2TiO12, Bi2Sr1.5Ba0.5Nb2TiO12, and Bi2SrBaNb2TiO12 were formed via solid-state synthesis and their structures characterized by combined Rietveld analysis of powder X-ray and neutron diffraction data. Static disorder was observed in the form of mixed cation occupancies between the Bi and the Sr, Ca, or Ba on the A sites in the perovskite block, as well as between the Nb and Ti sites. The degree of site mixing between the Bi site in the (Bi2O2)2+ layer and the perovskite-block A site increased with increasing average A site cation radius (ACR). Bi2SrBaNb2TiO12 displayed the greatest degree of Bi-A site static disorder. Bond valence sum (BVS) calculations showed an increase in A site BVS with average A site cation radius. All compositions except Bi2SrCaNb2TiO12 had overbonded A sites and the A site BVS increased nearly linearly with lattice parameter and ACR. A preference was observed for Ca2+ to remain on the A site while Ba2+ preferred to disorder to the Bi site, indicating that the cation site mixing occurs to reduce strain between the (Bi2O2)2+ layer and the perovskite block in the structure. Unusually large Ti site BVS and thermal parameter for the equatorial oxygen in the TiO6 octahedra were observed in structural models that included full oxygen occupancy. However, excellent structure models and more reasonable BVS values were obtained by assuming oxygen vacancies in the TiO6 octahedra. AC impedance spectroscopy performed on all samples indicate that the total electrical conductivity is on the order of at 900°C.  相似文献   

7.
The synthesis of two‐dimensional (2D) polymer nanosheets with a well‐defined microporous structure remains challenging in materials science. Here, a new kind of 2D microporous carbonaceous polymer nanosheets was synthesized through polymerization of a very low concentration of 1,4‐dicyanobenzene in molten zinc chloride at 400–500 °C. This type of nanosheets has a thickness in the range of 3–20 nm, well‐defined microporosity, a high surface area (~537 m2 g?1), and a large micropore volume (~0.45 cm3 g?1). The microporous carbonaceous polymer nanosheets exhibit superior CO2 sorption capability (8.14 wt % at 298 K and 1 bar) and a relatively high CO2 selectivity toward N2 (25.6). Starting from different aromatic nitrile monomers, a variety of 2D carbonaceous polymer nanosheets can be obtained showing a certain universality of the ionothermal method reported herein.  相似文献   

8.
《中国化学》2018,36(6):538-544
Bi‐ and Y‐codoped TiO2 photocatalysts were synthesized through a sol‐gel method, and they were applied in the photocatalytic reduction of CO2 to formic acid under visible light irradiation. The results revealed that, after doping Bi and Y, the surface area of TiO2 was increased from 5.4 to 93.1 m2/g when the mole fractions of doping Bi and Y were 1.0% and 0.5%, respectively, and the lattice structures of the photocatalysts changed and the oxygen vacancies on the surface of the photocatalysts formed, which would act as the electron capture centers and slow down the recombination of photo‐induced electron and hole. The photocurrent spectra also proved that the photocatalysts had better electronic transmission capacities. The HCOOH yield in CO2 photocatalytic reduction was 747.82 μmol/gcat by using 1% Bi‐0.5% Y‐TiO2 as a photocatalyst. The HCOOH yield was 1.17 times higher than that by using 1% Bi‐TiO2, and 2.23 times higher than that by using pure TiO2. Furthermore, the 1% Bi‐0.5% Y‐TiO2 showed the highest apparent quantum efficiency (AQE) of 4.45%.  相似文献   

9.
Developing noble‐metal‐free electrocatalysts is important to industrially viable ammonia synthesis through the nitrogen reduction reaction (NRR). However, the present transition‐metal electrocatalysts still suffer from low activity and Faradaic efficiency due to poor interfacial reaction kinetics. Herein, an interface‐engineered heterojunction, composed of CoS nanosheets anchored on a TiO2 nanofibrous membrane, is developed. The TiO2 nanofibrous membrane can uniformly confine the CoS nanosheets against agglomeration, and contribute substantially to the NRR performance. The intimate coupling between CoS and TiO2 enables easy charge transfer, resulting in fast reaction kinetics at the heterointerface. The conductivity and structural integrity of the heterojunction are further enhanced by carbon nanoplating. The resulting C@CoS@TiO2 electrocatalyst achieves a high ammonia yield (8.09×10?10 mol s?1 cm?2) and Faradaic efficiency (28.6 %), as well as long‐term durability.  相似文献   

10.
In this study, the effect of pH values on the microstructure and photocatalytic activity of Ce‐Bi2O3 under visible light irradiation was investigated in detail. In alkaline condition (e.g. pH = 9), the as‐prepared Ce‐Bi2O3 exhibited an agglomerated status and mesoporous structures without a long‐range order. While in weak acid condition (e.g. pH = 5), the Ce‐Bi2O3 exhibited a best morphology with irregular nanosheets. Correspondingly, it possessed largest surface area (24.641 m2 g?1) and pore volume (9.825E‐02 cm3 g?1). These unique nanosheets can offer an attachment for pollutant molecules and reduce the distance of electron immigration from inner to surface, thus facilitating the separation of photoelectron and hole pairs. Compared with the pure Bi2O3, the band gap of Ce‐Bi2O3 prepared at different pH was much lower. Among them, the band gap of Ce‐Bi2O3 (pH of 5) was lowest (2.61 eV). Ce‐Bi2O3 (pH of 5) exhibited as tetragonal crystal with the bismuth oxide in the form of the composites, which could reduce the band gap width or suppress the charge‐carrier recombination, subsequently possessing great photocatalytic activity for acid orange II under visible light irradiation. After 2 h degradation under visible light, the degradation rate of acid Orange II was up to 96.44% by Ce‐Bi2O3 prepared at pH 5. Overall, it can be concluded that the pH values had effects on the microstructure and photocatalytic activity of Ce‐Bi2O3 catalysts.  相似文献   

11.
The need for renewable energy focuses attention on hydrogen obtained by using sustainable and green methods. The sustainable compound glycerol can be used for hydrogen production by heterogeneous photocatalysis. A novel approach involves the promotion of the TiO2 photocatalyst with a binary combination of nitrogen and transition metal. We report the synthesis and spectroscopic characterization of the new N‐M‐TiO2 photocatalysts (M=none, Cr, Co, Ni, Cu), and the photocatalytic reforming of glycerol to hydrogen under ambient conditions and near‐UV or visible light versus benchmark P25 TiO2. In units of activity μmol m?2 h?1, N‐Ni‐TiO2 is five‐fold more active than P25, and N‐Cu‐TiO2 is 44‐fold more active. The photocatalytic activity of N‐M‐TiO2 increases from Cr to Co and Ni, whereas the photoluminescence decreases; the change in activity is due to the modulation of charge recombination.  相似文献   

12.
Present work mainly focuses on experimental investigation to improvement of hydrogen production by water photoelectrolysis. An experimental facility was designed and constructed for visible light photocatalysis. A series of N‐TiO2 photocatalysts impregnated with platinum on the surface of N‐TiO2 were prepared. Hydrogen production upon irradiating aqueous Pt/N‐TiO2 suspension with visible light was investigated. The shift in excitation wavelength of TiO2 was 380 nm improved the yield of hydrogen production by N‐TiO2 and Pt/N‐TiO2. We used a 400 W mercury arc lamp combined with a 400 nm cutoff filter eliminating all the wavelengths under 400 nm. Pt/N‐TiO2 material was characterized with TPR, reflective UV/Visible spectroscopy and TEM. The best hydrogen production rate obtained for this setup for N/Ti = 10, 0.05 wt% Pt/N‐TiO2, through water splitting was about 772 μmolh?1g?1.  相似文献   

13.
Constructing hollow multi‐shelled structures (HoMSs) has a significant effect on promoting light absorption property of catalysts and enhancing their performance in solar energy conversion applications. A facile hydrothermal method is used to design the SrTiO3?TiO2 heterogeneous HoMSs by hydrothermal crystallization of SrTiO3 on the surface of the TiO2 HoMSs, which will realize a full coverage of SrTiO3 on the TiO2 surface and construct the SrTiO3/TiO2 junctions. The broccoli‐like SrTiO3?TiO2 heterogeneous HoMSs exhibited a fourfold higher overall water splitting performance of 10.6 μmol h?1 for H2 production and 5.1 μmol h?1 for O2 evolution than that of SrTiO3 nanoparticles and the apparent quantum efficiency (AQE) of 8.6 % at 365 nm, which can be mainly attributed to 1) HoMS increased the light absorption ability of the constructed photocatalysts and 2) the SrTiO3?TiO2 junctions boosted the separation efficiency of the photogenerated charge carriers.  相似文献   

14.
The reduced graphene oxide‐Bi2WO6 (rGO‐BWO) photocatalysts with the different RF/O values (molar ratio of the F molar mass and the O's molar mass of Bi2WO6) had been successfully synthesized via one‐step hydrothermal method. The F‐doped rGO‐BWO samples were characterized by X‐ray diffraction patterns (XRD), field‐emission scanning electron microscopy (FE‐ESEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller surface area (BET), X‐ray photoelectron spectroscopy (XPS) and UV–vis diffuse reflectance spectra (DRS). The results indicate that F? ions had been successfully doped into rGO‐BWO samples. With the increasing of the RF/O values from 0 to 2%, the evident change of the morphology and the absorption edges of F‐doped rGO‐BWO samples and the photocatalytic activities had been enhanced. Moreover, the photocatalytic activity of F‐doped rGO‐BWO with RF/O = 0.05 were better than rGO‐BWO and the other F‐doped rGO‐BWO under 500 W Xe lamp light irradiation. The enhanced photocatalytic activity can be attributed to the morphology of the intact microsphere that signify the bigger specific surface area for providing more possible reaction sites for the adsorption–desorption equilibrium of photocatalytic reaction, the introduction of F? ions that may cause the enhancement of surface acidity and creation of oxygen vacancies under visible light irradiation, the narrower band gap which means needing less energy for the electron hole pair transition.  相似文献   

15.
Mesoporous wall‐structured TiO2 on reduced graphene oxide (RGO) nanosheets were successfully fabricated through a simple hydrothermal process without any surfactants and annealed at 400 °C for 2 h under argon. The obtained mesoporous structured TiO2–RGO composites had a high surface area (99 0307 m2 g?1) and exhibited excellent electrochemical cycling (a reversible capacity of 260 mAh g?1 at 1.2 C and 180 mAh g?1 at 5 C after 400 cycles), demonstrating it to be a promising method for the development of high‐performance Li‐ion batteries.  相似文献   

16.
Samarium and nitrogen co‐doped Bi2WO6 nanosheets were successfully synthesized by using a hydrothermal method. The crystal structures, morphology, elemental compositions, and optical properties of the prepared samples were investigated. The incorporation of samarium and nitrogen ions into Bi2WO6 was proved by X‐ray diffraction, energy dispersive X‐ray spectroscopy, and X‐ray photoelectron spectroscopy. UV/Vis diffuse reflectance spectroscopy indicated that the samarium and nitrogen co‐doped Bi2WO6 possessed strong visible‐light absorption. Remarkably, the samarium and nitrogen co‐doped Bi2WO6 exhibited higher photocatalytic activity than single‐doped and pure Bi2WO6 under visible‐light irradiation. Radical trapping experiments indicated that holes (h+) and superoxide radicals ( . O2?) were the main active species. The results of photoluminescence spectroscopy and photocurrent measurements demonstrated that the recombination rate of the photogenerated electrons and holes pairs was greatly depressed. The enhanced activity was attributed to the synergistic effect of the in‐built Sm3+/Sm2+ redox pair centers and the N‐doped level. The mechanism of the excellent photocatalytic activity of Sm‐N‐Bi2WO6 is also discussed.  相似文献   

17.
《化学:亚洲杂志》2017,12(20):2727-2733
Hydrogen production by catalytic water splitting using sunlight holds great promise for clean and sustainable energy source. Despite the efforts made in the past decades, challenges still exist in pursuing solid catalysts with light‐harvesting capacity, large surface areas and efficient utilities of the photogenerated carrier, at the same time. Here, a multiple structure design strategy leading to highly enhanced photocatalytic performance on hydrogen production from water splitting in Dion–Jacobson perovskites KCa2Nan ‐3Nbn O3n +1 is described. Specifically, chemical doping (N/Nb4+) of the parent oxides via ammoniation improved the ability of sunlight harvesting efficiently; subsequent liquid exfoliation of the doped perovskites yielded ultrathin [Ca2Nan ‐3Nbn O3n +1] nanosheets with greatly increased surface areas. Significantly, the maximum hydrogen evolution appears in the n =4 nanosheets, which suggests the most favorable thickness for charge separation in such perovskite‐type catalysts. The optimized black N/Nb4+‐[Ca2NaNb4O13] nanosheets show greatly enhanced photocatalytic performance, as high as 973 μmol h−1 with Pt loading, on hydrogen evolution from water splitting. As a proof‐of‐concept, this work highlights the feasibility of combining various chemical strategies towards better catalysts and precise thickness control of two‐dimensional materials.  相似文献   

18.
A unique hybrid, TiO2–B nanosheets/anatase nanocrystals co‐anchored on nanoporous graphene sheets, can be synthesized by a facile microwave‐induced in situ reduction–hydrolysis route. The as‐formed nanohybrid has a hierarchically porous structure, involving both mesopores of approximately 4 nm and meso‐/macropores of 30–60 nm in the graphene sheets, and a large surface area. Importantly, electrodes composed of the nanohybrid exhibit superior rate capability (160 mA h g?1 at ca. 36 C; 154 mA h g?1 at ca. 72 C) and excellent cyclability. The synergistic effects of conductive graphene with numerous nanopores and the pseudocapacitive effect of ultrafine TiO2–B nanosheets and anatase nanocrystals endow the hybrid a superior rate capability.  相似文献   

19.
Over the past 200 years, the most famous and important heteroatom Keggin architecture in polyoxometalates has only been synthesized with Mo, W, V, or Nb. Now, the self‐assembly of two phosphate (PO43?)‐centered polyoxo‐titanium clusters (PTCs) is presented, PTi16 and PTi12, which display classic heteroatom Keggin and its trivacant structures, respectively. Because TiIV has lower oxidate state and larger ionic radius than MoVI, WVI, VV, and NbV, additional TiIV centres in these PTCs are used to stabilize the resultant heteroatom Keggin structures, as demonstrated by the cooresponding theoretical calculation results. These photoactive PTCs can be utilized as efficient photocatalysts for highly selective CO2‐to‐HCOOH conversion. This new discovery indicates that the classic heteroatom Keggin family can be assembled with Ti, thus opening a research avenue for the development of PTC chemistry.  相似文献   

20.
Imidazole type ionic liquid, 1‐hexadecyl‐3‐methylimidazolium chloride, was used to template the synthesis of high‐surface‐area mesoporous silica under acidic conditions and crystalline titanium dioxide (TiO2) nanoparticles of anatase phase were inserted utilizing a solvent evaporation‐induced method. The surface area of more than 700 m2 g?1 was obtained after TiO2 impregnation. Further, the polyoxometalate, 12‐tungstophosphoric acid (PW12) was dispersed on the surface of TiO2 to form PW12–TiO2–silica hybrid catalytic materials. The catalytic activity of this hybrid material was tested for solvent‐free, aerobic oxidation of n‐hexadecane. The experimental investigation shows that PW12–TiO2 nanocrystals did not block the pore channels and gave good conversion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号