首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Two-dimensional(2D) materials composed of single pnictogen element, namely, 2D pnictogens(e.g.,black phosphorus, arsenene, antimonene and bismuthine), have recently showed remarkable potential for biomedical applications, especially after the rapid development of black phosphorus. With unique optical and electronic properties, 2D pnictogens are considered as promising nanoagents for biosensors, diagnosis and therapy. In this review, after brief introduction of the structure, properties, synthesi...  相似文献   

2.
Two-dimensional (2D) monometallic pnictogens (antimony or Sb, and bismuth or Bi) nanosheets demonstrate potential in a variety of fields, including quantum devices, catalysis, biomedicine and energy, because of their unique physical, chemical, electronic and optical properties. However, the development of general and high-efficiency preparative routes toward high-quality pnictogen nanosheets is challenging. A general method involving a molten-salt-assisted aluminothermic reduction process is reported for the synthesis of Sb and Bi nanosheets in high yields (>90 %). Electrocatalytic CO2 reduction was investigated on the Bi nanosheets, and high catalytic selectively to formate was demonstrated with a considerable current density at a low overpotential and an impressive stability. Bi nanosheets continuously convert CO2 into formate in a flow cell operating for one month, with a yield rate of 787.5 mmol cm−2 h−1. Theoretical results suggest that the edge sites of Bi are far more active than the terrace sites.  相似文献   

3.
Two-dimensional(2D) transition metal dichalcogenide(TMD) nanosheets have attracted considerable attention owing to their diverse properties and great potential in a wide range of applications. In order to further tune their properties and then broaden their application domain, large efforts have been devoted into engineering the structures of 2D TMD nanosheets at atomic scale, especially the alloying technology.Alloying different 2D TMD nanosheets into 2D alloys not only offers the opportunities...  相似文献   

4.
石乃恩  宋传远  张俊  黄维 《物理化学学报》2016,32(10):2447-2461
金属卟啉是一种重要的金属-有机复合物,在光电转换器件、催化、传感、医学等领域有着广阔的应用前景。对无机二维纳米材料(石墨烯或过渡金属硫属化合物等)的广泛研究促使金属-有机二维纳米材料成为当前的研究热点之一。本文针对金属-有机以及卟啉二维纳米材料的研究现状,在简要回顾金属-有机二维纳米材料发展历史的基础上,详细总结了金属卟啉单分散二维纳米晶和二维薄膜的制备方法,综述了其当前在太阳能电池、光电催化以及光学传感等方面的应用,最后讨论了金属卟啉二维纳米材料当前面临的研究问题及未来可能的发展方向。  相似文献   

5.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

6.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

7.
Highly anisotropic 2D nanosheets of inorganic solids with nanometer-level thickness attract a great deal of research activity because of their unique merits in exploring novel high performance photocatalysts applicable for environmental purification and production of renewable clean energy. The 2D inorganic nanosheets possess many valuable properties such as tailorable band structures and chemical compositions, large surface areas, well-defined defect-free surface structure, and tunable electrical conductivities. Due to these unique advantages of 2D inorganic nanosheets, these materials can be used as promising building blocks for hybrid-type photocatalysts with optimized band structures, expanded surface areas, improved charge separation behaviors, and enhanced reaction kinetics. Of prime importance is that unusually strong electronic coupling can occur between very thin 2D inorganic nanosheets and hybridized nanospecies, leading to the synergistic optimization of electronic and optical properties, and thus the remarkable enhancement of photocatalytic activity. Depending on the type of component nanosheets, diverse examples of inorganic nanosheet-based photocatalysts are presented along with the in-depth discussion about critical roles of inorganic nanosheet in these hybrid photocatalysts. Future perspectives in the researches for 2D inorganic nanosheet-based photocatalysts are discussed to offer useful directions for designing and synthesizing novel high performance photocatalysts applicable for renewable energy production and environmental purification.  相似文献   

8.
Two-dimensional(2D) nanomaterials such as transition metal dichalcogenides(TMDs) and graphene have attracted extensive interest as emergent materials, owing to their excellent properties that favor their future use in electronic devices, catalysis, optics, and biological- or energy-relevant areas. However, 2D nanosheets tend to easily restack and condense, which weakens their performance in many of these applications. Assembling these 2D nanosheets as building blocks for three-dimensional(3D) architectures not only maintains the intrinsic performances of the 2D nanostructures but also synergistically makes use of the advantages of the 3D microstructures to improve the overall material properties. In this critical review, we will highlight recent developments of sundry 2D nanosheet-assembled 3D architectures, including their design, synthesis, and potential applications. Their controllable syntheses, novel structures, and potential applications will be systematically explained, analyzed, and summarized. In the end, we will offer some perspective on the challenges facing future advancement of this field.  相似文献   

9.
Layered materials are of high importance because of their anisotropy and as a source of 2D materials. Whilst there is a plethora of multi‐elemental 2D materials, the number mono‐elemental 2D materials is rather limited. Herein, we demonstrate that aqueous shear exfoliation can be used to obtain As, Sb, and Bi exfoliated nanosheets. Morphological and chemical characterization of the exfoliated materials shows a decrease in thickness, sheet‐to‐nanosheet scale, and partial oxidation owing to a higher surface area. The electrochemical performance is tested in terms of inherent electrochemistry, electron transfer, and sensing applications as demonstrated with ascorbic acid. Potential energy‐related applications are evaluated in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), with shear‐exfoliated Sb having the best electrochemical performance overall. These findings will have a profound impact on the preparation and application of 2D mono‐elemental materials.  相似文献   

10.
The properties of two-dimensional(2D) materials are highly dependent on their phase and thickness. Various phases exist in tin disulfide(SnS2), resulting in promising electronic and optical properties. Hence,accurately identifying the phase and thickness of SnS2 nanosheets is prior to their optoelectronic applications. Herein, layered 2H-SnS2 and 4H-SnS2 crystals were grown by chemical vapor transportation and the crystalline phase of SnS2 w...  相似文献   

11.
Layered materials are of high importance because of their anisotropy and as a source of 2D materials. Whilst there is a plethora of multi‐elemental 2D materials, the number mono‐elemental 2D materials is rather limited. Herein, we demonstrate that aqueous shear exfoliation can be used to obtain As, Sb, and Bi exfoliated nanosheets. Morphological and chemical characterization of the exfoliated materials shows a decrease in thickness, sheet‐to‐nanosheet scale, and partial oxidation owing to a higher surface area. The electrochemical performance is tested in terms of inherent electrochemistry, electron transfer, and sensing applications as demonstrated with ascorbic acid. Potential energy‐related applications are evaluated in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR), with shear‐exfoliated Sb having the best electrochemical performance overall. These findings will have a profound impact on the preparation and application of 2D mono‐elemental materials.  相似文献   

12.
Two‐dimensional nanosheets have shown great potential for separation applications because of their exceptional molecular transport properties. Nanosheet materials such as graphene oxides, metal–organic frameworks, and covalent organic frameworks display unique, precise, and fast molecular transport through nanopores and/or nanochannels. However, the dimensional instability of nanosheets in harsh environments diminishes the membrane performance and hinders their long‐term operation in various applications such as gas separation, water desalination, and ion separation. Recent progress in nanosheet membranes has included modification by crosslinking and functionalization that has improved the stability of the membranes, their separation functionality, and the scalability of membrane formation while the membranes’ excellent molecular transport properties are retained. These improvements have enhanced the potential of nanosheet membranes in practical applications such as separation processes.  相似文献   

13.
As one member of the emerging class of ultrathin two‐dimensional (2D) transition‐metal dichalcogenide (TMD) nanomaterials, the ultra‐thin MoS2 nanosheet has attracted increasing research interest as a result of its unique structure and fascinating properties. Solution‐phase methods are promising for the scalable production, functionalization, hybridization of MoS2 nanosheets, thus enabling the widespread exploration of MoS2‐based nanomaterials for various promising applications. In this Review, an overview of the recent progress of solution‐processed MoS2 nanosheets is presented, with the emphasis on their synthetic strategies, functionalization, hybridization, properties, and applications. Finally, the challenges and opportunities in this research area will be proposed.  相似文献   

14.
Two‐dimensional nanosheets have shown great potential for separation applications because of their exceptional molecular transport properties. Nanosheet materials such as graphene oxides, metal–organic frameworks, and covalent organic frameworks display unique, precise, and fast molecular transport through nanopores and/or nanochannels. However, the dimensional instability of nanosheets in harsh environments diminishes the membrane performance and hinders their long‐term operation in various applications such as gas separation, water desalination, and ion separation. Recent progress in nanosheet membranes has included modification by crosslinking and functionalization that has improved the stability of the membranes, their separation functionality, and the scalability of membrane formation while the membranes’ excellent molecular transport properties are retained. These improvements have enhanced the potential of nanosheet membranes in practical applications such as separation processes.  相似文献   

15.
Due to the unique physical and chemical merits including excellent electrical conductivity,superior chemical stability,and tunable carbon framework,two-dimensional(2 D)porous carbon nanosheets have drawn increasing research interest and demonstrated promising potentials in various applications.However,regulating the nanostructure of 2 D porous carbon nanosheets by facile and efficient strategies remains a great challenge.Herein,we develop a new strategy to construct Fe,N-codoped hierarchical porous carbon nanosheets(Fe-N-HPCNS)by using 2 D Fe-Zn layered double hydroxides(Fe-Zn-LDH)as multifunctional templates.Fe-Zn-LDH could functionalize not only as 2 D structure directing agents but also as ternary hierarchical porogens for micro-,meso-and macropores and in situ Fe dopants.This multifunctional templating strategy toward 2 D porous carbon nanosheets can improve the utilization of templates and shows great advantages against conventional procedures that additional porogens and/or dopants are often needed.  相似文献   

16.
Two‐dimensional materials have allowed for great advances in the biosensors field and to obtain sophisticated, smart, and miniaturized devices. In this work, we optimized a highly sensitive and selective phenol biosensor using 2D pnictogens (phosphorene, arsenene, antimonene, and bismuthene) as sensing platforms. Exfoliated pnictogen were obtained by the shear‐force method, undergoing delamination and downsizing to thin nanosheets. Interestingly, compared with the other tested elements, antimonene exhibited the highest degree of exfoliation and the lowest oxidation‐to‐bulk ratio, to which we attribute its enhanced performance in the phenol biosensor system reported here. The proposed design represents the first biosensor approach developed using exfoliated pnictogens beyond phosphorene.  相似文献   

17.
Two‐dimensional materials have allowed for great advances in the biosensors field and to obtain sophisticated, smart, and miniaturized devices. In this work, we optimized a highly sensitive and selective phenol biosensor using 2D pnictogens (phosphorene, arsenene, antimonene, and bismuthene) as sensing platforms. Exfoliated pnictogen were obtained by the shear‐force method, undergoing delamination and downsizing to thin nanosheets. Interestingly, compared with the other tested elements, antimonene exhibited the highest degree of exfoliation and the lowest oxidation‐to‐bulk ratio, to which we attribute its enhanced performance in the phenol biosensor system reported here. The proposed design represents the first biosensor approach developed using exfoliated pnictogens beyond phosphorene.  相似文献   

18.
Two‐dimensional (2D) semiconducting nanosheets have emerged as an important field of materials, owing to their unique properties and potential applications in areas ranging from electronics to catalysis. However, the controlled synthesis of ultrathin 2D nanosheets remains a great challenge, due to the lack of an intrinsic driving force for anisotropic growth. High‐quality ultrathin 2D FeSe2 nanosheets with average thickness below 7 nm have been synthesized on large scale by a facile solution method, and a formation mechanism has been proposed. Due to their favorable structural features, the as‐synthesized ultrathin FeSe2 nanosheets exhibit excellent electrocatalytic activity for the reduction of triiodide to iodide and low charge‐transfer resistance at the electrolyte–electrode interface in dye‐sensitized solar cells (DSSCs). The DSSCs with FeSe2 nanosheets as counter electrode material achieve a high power conversion efficiency of 7.53 % under a simulated solar illumination of 100 mW cm?2 (AM 1.5), which is comparable with that of Pt‐based devices (7.47 %).  相似文献   

19.
In two‐dimensional (2D) amorphous nanosheets, the electron–phonon coupling triggered by localization of the electronic state as well as multiple‐scattering feature make it exhibit excellent performance in optical science. VS2 nanosheets, especially single‐layer nanosheets with controllable electronic structure and intrinsic optical properties, have rarely been reported owing to the limited preparation methods. Now, a controllable and feasible switching method is used to fabricate 2D amorphous VS2 and partial crystallized 2D VO2(D) nanosheets by altering the pressure and temperature of supercritical CO2 precisely. Thanks to the strong carrier localization and the quantum confinement, the unique 2D amorphous structures exhibit full band absorption, strong photoluminescence, and outstanding photothermal conversion efficiency.  相似文献   

20.
This paper reports a large-scale synthesis of ZnO balls made of fluffy thin ZnO nanosheets by simple solution process at low-temperature of 65±2°C. The synthesized ZnO structures were characterized in detail in terms of their morphological, structural, optical and photocatalytic properties. The detailed morphological characterizations, done by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), confirmed that the synthesized products are ZnO balls which are made by accumulation of hundreds of thin ZnO nanosheets. Interestingly, it is seen that the nanosheets are arranged in such a special fashion that they made ball-like morphologies. Detailed structural examinations revealed that of as-synthesized ZnO products are well-crystalline and possessing wurtzite hexagonal phase. The optical property, measured by UV-Visible spectroscopy, substantiated good optical properties for as-synthesized ZnO balls. The as-synthesized ZnO balls were utilized as an efficient photocatalysts for the photocatalytic degradation of methylene blue (MB) dye. Almost complete degradation of MB was observed in presence of ZnO balls composed of nanosheets within 70 min under UV-light irradiation. By comparing the photocatalytic performance with commercially available TiO(2)-UV-100, it was observed that the synthesized ZnO balls exhibited superior photocatalytic performance as compared to TiO(2)-UV-100 photocatalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号