首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1825篇
  免费   669篇
  国内免费   287篇
化学   2720篇
晶体学   2篇
力学   1篇
综合类   1篇
数学   8篇
物理学   49篇
  2024年   15篇
  2023年   65篇
  2022年   138篇
  2021年   207篇
  2020年   454篇
  2019年   268篇
  2018年   179篇
  2017年   93篇
  2016年   244篇
  2015年   223篇
  2014年   170篇
  2013年   149篇
  2012年   131篇
  2011年   123篇
  2010年   107篇
  2009年   66篇
  2008年   53篇
  2007年   33篇
  2006年   21篇
  2005年   14篇
  2004年   13篇
  2003年   4篇
  2002年   2篇
  1998年   1篇
  1996年   1篇
  1993年   1篇
  1990年   3篇
  1986年   1篇
  1985年   2篇
排序方式: 共有2781条查询结果,搜索用时 15 毫秒
41.
Zeolitic imidazolate framework (ZIF) hybrid fluorescent nanoparticles and ZIF antibody conjugates have been synthesized, characterized, and employed in lateral-flow immunoassay (LFIA). The bright fluorescence of the conjugates and the possibility to tailor their mobility gives a huge potential for diagnostic assays. An enzyme-linked immunosorbent assay (ELISA) with horseradish peroxidase (HRP) as label, proved the integrity, stability, and dispersibility of the antibody conjugates, LC-MS/MS provided evidence that a covalent link was established between these metal-organic frameworks and lysine residues in IgG antibodies.  相似文献   
42.
Two new hydrostable two-dimensional(2 D) uranyl coordination complexes [(UO_2)_5(μ_3-O)_2(nbca)_2].7 H_2O(1) and [(UO_2)_3(nbca)_2(H_2O)_3]·2 H_2O(2)(H_3 nbca=5-nitro-1,2,3-benzenetricarboxylic acid) were hydrothermal synthesized.Single-crystal structural refinements reveal that both of the two complexes were formed by the packing of 2D uranyl coordination sheets via the hydrogen bonds.The nbca ligand coordinating to the uranyl polyhedron centers constructed the 2D sheets.There are UO_8 hexagonal bipyramids and UO_7 pentagonal bipyramids in 1 while only U07 pentagonal bipyramids in 2.Photocatalytic degradation of rhodamine B(RhB) in aqueous solution was studied.Complex 2 possesses better performance than 1 with 96.2 % of the RhB was degraded in only 60 min.Mechanism studies reveal that the dissolved oxygens are essential to the RhB degradation.The photocurrent density of 2 is more stable than that of 1,which indicating the stronger ability to separate photoexcited electrons and hole pairs of 2.  相似文献   
43.
44.
This work reports on a novel and versatile approach to control the structure of metal–organic framework (MOFs) films by using polymeric brushes as 3D primers, suitable for triggering heterogeneous MOF nucleation. As a proof-of-concept, this work explores the use of poly(1-vinylimidazole) brushes primer obtained via surface-initiated atom transfer radical polymerization (SI-ATRP) for the synthesis of Zn-based ZIF-8 MOF films. By modifying the grafting density of the brushes, smooth porous films were obtained featuring inherently hydrophobic microporosity arising from ZIF-8 structure, and an additional constructional interparticle mesoporosity, which can be employed for differential adsorption of targeted adsorbates. It was found that the grafting density modulates the constructional porosity of the films obtained; higher grafting densities result in more compact structures, while lower grafting density generates increasingly inhomogeneous films with a higher proportion of interparticle constructional porosity.  相似文献   
45.
Metal–organic frameworks (MOFs) have shown great potential in gas separation and storage, and the design of MOFs for these purposes is an on-going field of research. Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is a valuable technique for characterizing these functional materials. It can provide a wide range of structural and motional insights that are complementary to and/or difficult to access with alternative methods. In this Concept article, the recent advances made in SSNMR investigations of small gas molecules (i.e., carbon dioxide, carbon monoxide, hydrogen gas and light hydrocarbons) adsorbed in MOFs are discussed. These studies demonstrate the breadth of information that can be obtained by SSNMR spectroscopy, such as the number and location of guest adsorption sites, host–guest binding strengths and guest mobility. The knowledge acquired from these experiments yields a powerful tool for progress in MOF development.  相似文献   
46.
In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.  相似文献   
47.
We report a Cu-based metal–organic framework (MOF) decorated by CuO nanostructures as an efficient catalyst for the oxygen evolution reaction (OER). MIL-53(Cu) was synthesized by a hydrothermal approach using 1,4-bezenedicarboxylic acid as organic precursor and further annealed at 300°C to form CuO nanostructures on its surface. The produced electrocatalyst, CuO@MIL-53(Cu), was characterized using various techniques. Under alkaline conditions, the developed electrocatalyst exhibited an overpotential of 801 and 336 mV versus RHE at 10 and 1 mA cm−2, respectively. The reproducibility of the catalytic performance was validated using several electrodes. It was confirmed that the CuO hair-like nanostructures grown on MIL-53(Cu) using thermal treatment exhibit high OER activity, good kinetics and durability. CuO@MIL-53(Cu) is an economic noble-metal-free OER electrocatalyst. It has potential for application as anode material for sustainable energy technologies like batteries, fuel cells and water electrolysis.  相似文献   
48.
CeO2-based catalysts are widely studied in catalysis fields. Developing one novel synthetic approach to increase the intimate contact between CeO2 and secondary species is of particular importance for enhancing catalytic activities. Herein, an interfacial reaction between metal–organic framework (MOF)-derived carbon and KMnO4 to synthesize CeO2−MnO2, in which carbon is derived from the pyrolysis of Ce-MOFs under an inert atmosphere, is described. The MOF-derived carbon is found to restrain the growth of CeO2 crystallites under a high calcination temperature and, more importantly, intimate contact within CeO2/C is conveyed to CeO2/MnO2 after the interfacial reaction; this is responsible for the high catalytic activity of CeO2−MnO2 towards CO oxidation.  相似文献   
49.
(NH4)2[Zn2(O3PCH2CH2COO)2]⋅5 H2O (BIRM-1) is a new metal phosphonate material, synthesized through a simple hydrothermal reaction between zinc nitrate and 3-phosphonopropionic acid, using urea and tetraethylammonium bromide as the reaction medium. In common with other metal–organic framework materials, BIRM-1 has a large three-dimensional porous structure providing potential access to a high internal surface area. Unlike most others, it has the advantage of containing ammonium cations within the pores and has the ability to undergo cation exchange. Additionally, BIRM-1 also exhibits a reversible dehydration behavior involving an amorphization-recrystallization cycle. The ability to undergo ion exchange and dynamic structural behavior are of interest in their own right, but also increase the range of potential applications for this material. Here the crystal structure of this new metal phosphonate and its ion exchange behavior with K+ as an exemplar are studied in detail, and its unusual structure-reviving property reported.  相似文献   
50.
1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal–organic framework (MOF) sub‐nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light‐gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9–12 Å cavities connected by ca. 6 Å triangular windows work as angstrom‐scale ion channels, while confined AZO within the MOF cavities function as light‐driven molecular gates to efficiently regulate the ion flux. The AZO‐MOFSNCs show good cyclic gating performance and high on–off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO‐modified nanochannels (1.3–1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号