首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6584篇
  免费   558篇
  国内免费   5756篇
化学   10799篇
晶体学   49篇
力学   146篇
综合类   239篇
数学   386篇
物理学   1279篇
  2024年   41篇
  2023年   170篇
  2022年   174篇
  2021年   218篇
  2020年   159篇
  2019年   244篇
  2018年   140篇
  2017年   246篇
  2016年   318篇
  2015年   257篇
  2014年   528篇
  2013年   424篇
  2012年   436篇
  2011年   503篇
  2010年   483篇
  2009年   563篇
  2008年   586篇
  2007年   565篇
  2006年   606篇
  2005年   550篇
  2004年   545篇
  2003年   531篇
  2002年   524篇
  2001年   454篇
  2000年   310篇
  1999年   308篇
  1998年   379篇
  1997年   377篇
  1996年   336篇
  1995年   351篇
  1994年   309篇
  1993年   212篇
  1992年   223篇
  1991年   224篇
  1990年   173篇
  1989年   179篇
  1988年   98篇
  1987年   60篇
  1986年   27篇
  1985年   29篇
  1984年   19篇
  1983年   11篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 546 毫秒
991.
制备了一种基于ITO微电极阵列的多元免疫反应芯片,并实现多元肿瘤标志物的快速、灵敏检测。采用丝网印刷方法制作"花瓣型"ITO微电极阵列,与辐射状的微流控芯片相结合,形成八个独立的检测单元,每个检测单元履行不同的职能,其中三个单元分别用于完成癌胚抗原(CEA)、甲胎蛋白(AFP)和前列腺特异性抗原(PSA)的"夹心型"特异性免疫反应。首先在电极表面修饰K-掺杂石墨烯-CdS∶Eu纳米晶复合物,然后在这些复合物上依次修饰不同捕获抗体和对应的抗原,当对应的CdTe纳米粒子标记的二抗被带到电极表面时,会发生能量转移而实现电致化学发光(ECL)信号的有效猝灭;另外三个单元用做对照试验来验证这种微芯片的选择性;剩下的两个单元分别用来验证K-掺杂石墨烯-CdS∶Eu纳米晶复合物的发光强度,及经活化后CdTe纳米粒子的猝灭效率。这种简单、集成的高通量检测芯片,可发展为复杂样品的自动化、集成化分析检测平台。  相似文献   
992.
通过悬浮聚合的方法,用不同表面结构的纳米SiO2对聚甲基丙烯酸甲酯(PMMA)进行原位改性,得到纳米SiO2/聚甲基丙烯酸甲酯复合材料;利用红外光谱仪分析了复合材料的界面化学结构,利用热分析仪测定了其热稳定性,并采用冲击试验机测定了其力学性能.结果表明,不同表面结构的纳米SiO2均参与甲基丙烯酸甲酯的聚合反应,与PMMA基体之间形成化学键;而表面修饰有双键的纳米SiO2更易与甲基丙烯酸甲酯聚合,能更有效地提高PMMA的抗冲击性能.  相似文献   
993.
利用一水硫酸氢钠为催化剂使丙烯酸和异丁醇酯化合成了丙烯酸异丁酯;研究了一水硫酸氢钠用量、异丁醇用量、反应时间、温度及阻聚剂用量对丙烯酸异丁酯收率的影响.结果表明,当异丁醇与丙烯酸物质的量之比为3∶1,硫酸氢钠催化剂用量为丙烯酸量的2%,阻聚剂(对苯二酚)用量为丙烯酸质量的0.05%,反应时间为3h,反应温度为115℃时,酯化产率可达88.51%.  相似文献   
994.
以配位聚合物凝胶为模板, 构筑均一的聚吡咯纳米线网络, 聚合后经简单处理除去模板, 得到性能优异的聚吡咯凝胶. 结果表明, 模板法合成的聚吡咯凝胶为由均一纳米线组成的三维网络结构, 具有良好的力学性能、 较大的比表面积及优异的电化学特性, 在0.28 A/g电流密度下, 比电容可达450 F/g, 在2.8 A/g电流密度下充放电1000次, 比电容仍可保持88.6%. 聚吡咯纳米线网络凝胶经葡萄糖氧化酶负载后得到柔性传感电极, 对低浓度(0.2 mmol/L)的葡萄糖具有快速响应性能, 有望用于超级电容器及生物电化学传感器等领域.  相似文献   
995.
设计并合成了聚谷氨酸-聚乙二醇@碳酸钙(PPG@CaCO3)纳米遮蔽体系, 用于遮蔽聚乙烯亚胺(PEI). 一方面, 聚谷氨酸-聚乙二醇(PPG)可以降低PEI引起的细胞毒性, 更有利于体内应用; 另一方面, CaCO3可有效改善PPG导致的转染效率下降, 并在一定程度上提高PEI的细胞转染效率. 对比遮蔽体系PPG@CaCO3和聚谷氨酸-聚乙二醇@磷酸钙[PPG@Ca3(PO4)2]发现, PPG@CaCO3在微酸性环境中释放二氧化碳气体是提高细胞转染效率的关键因素. 小鼠体内循环实验表明, PPG@CaCO3遮蔽体系可以增加载体在血液中的循环时间. 因此, PPG@CaCO3遮蔽体系对于改善阳离子类基因载体的体内应用起到重要作用.  相似文献   
996.
合成了高强度亲水性含羧基聚噁二唑材料(POD-COOH)和含氨基金属有机框架材料(NH2-MIL-125), 以NH2-MIL-125为填料, 与POD-COOH基体材料进行溶液共混, 并通过溶液浇铸法制备系列新型自支撑复合正渗透膜, 研究NH2-MIL-125的引入对复合正渗透膜结构和性能的影响. 研究结果表明, 所制备的系列复合正渗透膜均呈致密结构, 且随着NH2-MIL-125含量的增加, 复合膜的表面亲水性增加、 电负性增强, 并保持良好的机械性能. 以去离子水为进料液, 1.5 mol/L硫酸钠溶液为汲取液, 对上述自支撑复合膜进行正渗透性能测试, 发现由于消除了传统正渗透膜支撑层的内浓差极化现象, 该新型复合正渗透膜在分离过程中具有优异的正渗透性能.  相似文献   
997.
苗中硕  门永锋 《应用化学》2020,37(6):642-649
采用快速扫描量热法(FSC)结合传统的差示扫描量热仪(DSC)考察了聚对苯二甲酸-1,4-环己烷二甲醇酯(PCT)聚酯在接近玻璃化转变(Tg)和熔融温度(Tm)范围(100~270 ℃)的结晶和熔融行为。 较大过冷度时PCT聚酯结晶较快,FSC有效地抑制降温过程结晶的发生,而较低过冷度下传统DSC可以避免样品降解对实验结果的影响,二者的结合能很好地对PCT聚酯结晶动力学进行测量,实验结果表明在175 ℃时结晶速率最快。 并且利用Flash DSC对等温结晶温度下形成的片晶熔点进行加热速率的相关测量,在熔融动力学建模的基础上进行校准,以确定零加热速率下片晶的熔点。 Hoffman-Weeks方程中Tm与结晶温度(Tc)的线性关系与Tc=Tm的交点给出了PCT晶体的平衡熔融温度$T_m^o$为315 ℃。  相似文献   
998.
马安彤  付超  楚慧颖  冉祥海  聂伟 《应用化学》2020,37(12):1411-1419
为了提高聚偏氟乙烯(PVDF)的压电性能,需要寻找有效的途径来提高PVDF的电活性相(β相)含量。 通过水热法成功合成了Ag、ZnO以及二者复合(Ag-ZnO)的3种类型纳米粒子,并与PVDF共混形成PVDF复合薄膜。 通过表征PVDF复合材料的形貌,结晶性能和压电性能,可以发现Ag-ZnO复合纳米粒子的协同作用可以有效提高PVDF的结晶性能和压电性能。 此外,通过单轴拉伸可以使得所有PVDF膜的β相含量得到进一步提高,其中拉伸后的PVDF/Ag-ZnO纳米颗粒(P-C)的β相物质的量分数最高,达到70.0%,最佳的压电系数(d33)达到了31.0 pC/N。  相似文献   
999.
以聚偏氟乙烯(PVDF)和硅藻土为原料,通过静电纺丝法制备PVDF@硅藻土复合纤维膜,用于锂离子电池隔膜。 研究了隔膜的吸液率、热稳定性和电化学性能等。 添加硅藻土可有效提高复合膜的电解液吸收率和电化学性能,其中吸液率可达623.6%,相比于PVDF膜和聚丙烯(PP)膜具有优异的循环性能和倍率性能。  相似文献   
1000.
Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号