首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36646篇
  免费   18155篇
  国内免费   51篇
化学   52190篇
晶体学   13篇
力学   1099篇
数学   1097篇
物理学   453篇
  2024年   171篇
  2023年   4234篇
  2022年   1375篇
  2021年   2399篇
  2020年   4667篇
  2019年   2212篇
  2018年   2363篇
  2017年   594篇
  2016年   5528篇
  2015年   5490篇
  2014年   4907篇
  2013年   5014篇
  2012年   3015篇
  2011年   935篇
  2010年   3294篇
  2009年   3231篇
  2008年   969篇
  2007年   658篇
  2006年   95篇
  2005年   64篇
  2004年   42篇
  1997年   45篇
  1996年   47篇
  1995年   110篇
  1994年   72篇
  1993年   190篇
  1992年   70篇
  1991年   60篇
  1989年   45篇
  1988年   78篇
  1987年   62篇
  1986年   43篇
  1985年   47篇
  1984年   53篇
  1983年   62篇
  1982年   75篇
  1981年   84篇
  1980年   103篇
  1979年   95篇
  1978年   98篇
  1977年   164篇
  1976年   182篇
  1975年   185篇
  1974年   194篇
  1973年   111篇
  1972年   153篇
  1971年   122篇
  1970年   207篇
  1969年   126篇
  1968年   129篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
101.
1,3-Azaprotio transfer of propargylic α-ketocarboxylate oximes, a new type of alkynyl oximes featuring an ester tether, has been explored by taking advantage of gold catalysis. The incorporation of an oxygen atom to the chain of alkynyl oximes led to the formation of two different oxa-cyclic nitrones. It was found that internal alkynyl oximes with an E-configuration deliver five-membered nitrones, whereas terminal alkynyl oximes with an E-configuration afford six-membered nitrones. DFT calculations on four possible pathways supported a stepwise formation of C−N and C−H bonds, in which a 1,3-acyloxy-migration competes with the 1,3-azaprotio-transfer, especially in the case of internal alkynyl oximes. The relative nucleophilic properties of oxygen in the carbonyl group and the nitrogen in the oxime, the electronic effects of alkynes, and the influence of the ring system have been investigated computationally.  相似文献   
102.
The B3NO2 six-membered heterocycle (1,3-dioxa-5-aza-2,4,6-triborinane=DATB), comprising three different non-carbon period 2 elements, has been recently demonstrated to be a powerful catalyst for dehydrative condensation of carboxylic acids and amines. The tedious synthesis of DATB, however, has significantly diminished its utility as a catalyst, and thus the inherent chemical properties of the ring system have remained virtually unexplored. Here, a general and facile synthetic strategy that harnesses a pyrimidine-containing scaffold for the reliable installation of boron atoms is disclosed, giving rise to a series of Pym-DATBs from inexpensive materials in a modular fashion. The identification of a soluble Pym-DATB derivative allowed for the investigation of the dynamic nature of the B3NO2 ring system, revealing differential ring-closing and -opening behaviors depending on the medium. Readily accessible Pym-DATBs proved their utility as efficient catalysts for dehydrative amidation with broad substrate scope and functional-group tolerance, offering a general and practical catalytic alternative to reagent-driven amidation.  相似文献   
103.
A combination of pentafluorophenylboronic acid and oxalic acid catalyses the dehydrative substitution of benzylic alcohols with a second alcohol to form new C−O bonds. This method has been applied to the intermolecular substitution of benzylic alcohols to form symmetrical ethers, intramolecular cyclisations of diols to form aryl-substituted tetrahydrofuran and tetrahydropyran derivatives, and intermolecular crossed-etherification reactions between two different alcohols. Mechanistic control experiments have identified a potential catalytic intermediate formed between the aryl boronic acid and oxalic acid.  相似文献   
104.
Porous coordination polymers are molecule-based materials presenting a high degree of tunability, which offer many advantages for targeted applications over conventional inorganic materials. This work demonstrates that the hydrophilic/hydrophobic character of Prussian blue analogues having a lipophilic feature may be tuned to optimize the gas adsorption properties. The role of the coordinatively unsaturated metal sites is emphasized through a combination of theoretical and experimental study of water, ethanol, and n-hexane adsorption.  相似文献   
105.
Mixed-graft block copolymers (mGBCPs) consist of two or more types of polymeric side chains grafted on a linear backbone in a random, alternating, or pseudo-alternating sequence. They can phase-separate with the backbone serving as the interface of the blocks, and the side chains dominate their self-assembly behavior. mGBCPs are an accessible polymer architecture for exploring the idea of encoding polymer properties through the macromolecular architecture, as there are two distinct structural components that can be tuned: the backbone and the side chains. In this Concept article, the current literature on the synthesis of mGBCPs is reviewed, and the advantages and disadvantages of each synthetic method are noted. The self-assembly of mGBCPs is also discussed where possible. Finally, directions for future research on mGBCP synthesis and self-assembly are suggested.  相似文献   
106.
We report a supramolecular strategy for promoting the selective reduction of O2 for direct electrosynthesis of H2O2. We utilized cobalt tetraphenylporphyrin (Co-TPP), an oxygen reduction reaction (ORR) catalyst with highly variable product selectivity, as a building block to assemble the permanently porous supramolecular cage Co-PB-1(6) bearing six Co-TPP subunits connected through twenty-four imine bonds. Reduction of these imine linkers to amines yields the more flexible cage Co-rPB-1(6). Both Co-PB-1(6) and Co-rPB-1(6) cages produce 90–100 % H2O2 from electrochemical ORR catalysis in neutral pH water, whereas the Co-TPP monomer gives a 50 % mixture of H2O2 and H2O. Bimolecular pathways have been implicated in facilitating H2O formation, therefore, we attribute this high H2O2 selectivity to site isolation of the discrete molecular units in each supramolecule. The ability to control reaction selectivity in supramolecular structures beyond traditional host–guest interactions offers new opportunities for designing such architectures for a broader range of catalytic applications.  相似文献   
107.
A simple and efficient nitrile-directed meta-C−H olefination, acetoxylation, and iodination of biaryl compounds is reported. Compared to the previous approach of installing a complex U-shaped template to achieve a molecular U-turn and assemble the large-sized cyclophane transition state for the remote C−H activation, a synthetically useful phenyl nitrile functional group could also direct remote meta-C−H activation. This reaction provides a useful method for the modification of biaryl compounds because the nitrile group can be readily converted to amines, acids, amides, or other heterocycles. Notably, the remote meta-selectivity of biphenylnitriles could not be expected from previous results with a macrocyclophane nitrile template. DFT computational studies show that a ligand-containing Pd–Ag heterodimeric transition state (TS) favors the desired remote meta-selectivity. Control experiments demonstrate the directing effect of the nitrile group and exclude the possibility of non-directed meta-C−H activation. Substituted 2-pyridone ligands were found to be key in assisting the cleavage of the meta-C−H bond in the concerted metalation–deprotonation (CMD) process.  相似文献   
108.
An unprecedented Mn(I)-catalyzed selective hydroarylation and hydroalkenylation of unsaturated amides with commercially available organic boronic acids is reported. Alkenyl boronic acids have been successfully employed for the first time in Mn(I)-catalyzed carbon–carbon bond formation. A wide array of β-alkenylated amide products can be obtained in moderate to good yields, which offers practical access to five- and six-membered lactams. This protocol has predictable regio- and chemoselectivity, excellent functional group compatibility and ease of operation in air, representing a significant step-forward towards manganese-catalyzed C−C coupling.  相似文献   
109.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
110.
Pyrrolopyrrole aza‐BODIPY (PPAB) developed in our recent study from diketopyrrolopyrrole by titanium tetrachloride‐mediated Schiff‐base formation reaction with heteroaromatic amines is a highly potential chromophore due to its intense absorption and fluorescence in the visible region and high fluorescence quantum yield, which is greater than 0.8. To control the absorption and fluorescence of PPAB, particularly in the near‐infrared (NIR) region, further molecular design was performed using DFT calculations. This results in the postulation that the HOMO–LUMO gap of PPAB is perturbed by the heteroaromatic moieties and the aryl‐substituents. Based on this molecular design, a series of new PPAB molecules was synthesized, in which the largest redshifts of the absorption and fluorescence maxima up to 803 and 850 nm, respectively, were achieved for a PPAB consisting of benzothiazole rings and terthienyl substituents. In contrast to the sharp absorption of PPAB, a PPAB dimer, which was prepared by a cross‐coupling reaction of PPAB monomers, exhibited panchromatic absorption across the UV/Vis/NIR regions. With this series of PPAB chromophores in hand, a potential application of PPAB as an optoelectronic material was investigated. After identifying a suitable PPAB molecule for application in organic photovoltaic cells based on evaluation using time‐resolved microwave conductivity measurements, a maximized power conversion efficiency of 1.27 % was achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号