首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of porous materials capable of capturing volatile organic compounds (VOCs), such as benzene and its derivatives, with high efficiency, selectivity, and reusability is highly demanded. Here we report unusual vapor adsorption behavior toward VOCs by a new porous solid, composed of a polyaromatic capsule bearing a spherical nanocavity with subnano-sized windows. Without prior crystallization and high-temperature vacuum drying, the porous polyaromatic solid exhibits the following five features: vapor adsorption of benzene over cyclohexane with 90 % selectivity, high affinity toward o-xylene over benzene and toluene with >80 % selectivity, ortho-selective adsorption ability (>50 %) from mixed xylene isomers, tight VOCs storage even under high temperature and vacuum conditions, and at least 5 times reusability for xylene adsorption. The observed adsorption abilities are accomplished at ambient temperature and pressure within 1 h, which has not been demonstrated by organic/inorganic porous materials reported previously.  相似文献   

2.
Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide‐β‐cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first‐order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir–Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid‐phase extraction materials was investigated and the results indicated that using acrylamide‐β‐cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid‐phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.  相似文献   

3.
Highly ordered mesoporous three‐dimensional Ia3d silica (KIT‐6) with different pore diameters has been synthesized by using pluronic P123 as surfactant template and n‐butanol as cosolvent at different synthesis temperatures in a highly acidic medium. The materials were characterized by XRD and N2 adsorption. The synthesis temperature plays a significant role in controlling the pore diameter, surface area, and pore volume of the materials. The material prepared at 150 °C, KIT‐6‐150, has a large pore diameter (11.3 nm) and a high specific pore volume (1.53 cm3 g?1). We also demonstrate immobilization of lysozyme, which is a stable and hard protein, on KIT‐6 materials with different pore diameters. The amount of lysozyme adsorbed on large‐pore KIT‐6 is extremely large (57.2 μmol g?1) and is much higher than that observed for mesoporous silicas MCM‐41, SBA‐15, and KIT‐5, mesoporous carbons, and carbon nanocages. The effect of various parameters such as buffer concentration, adsorption temperature, concentration of the lysozyme, and the textural parameter of the adsorbent on the lysozyme adsorption capacity of KIT‐6 was studied. The amount adsorbed mainly depends on solution pH, ionic strength, adsorption temperature, and pore volume and pore diameter of the adsorbent. The mechanism of adsorption on KIT‐6 under different adsorption conditions is discussed. In addition, the structural stability of lysozyme molecules and the KIT‐6 adsorbent before and after adsorption were investigated by XRD, nitrogen adsorption, and FTIR spectroscopy.  相似文献   

4.
Cobalt hexacyanoferrate of various compositions was prepared in flow mode and the role of the vacancy on the structure, thermogravimetric (TG) properties, and the adsorption efficiency was studied. The material, NayCo[Fe(CN)6]1−xz H2O, with a minimum vacancy of x=0.014 to the highest x=0.47, was obtained. The TG-differential scanning calorimetry (DSC) profile showed a distinct influence of the vacancy on the water release temperature. Materials with x>0.35 showed a smooth release of water at a relatively lower temperature. However, for the materials with x<0.35, water release took place in multiple steps, suggesting the existence of various forms of water. The FTIR profiles supported the existence of free and bonded water molecules. However, the materials with multiple water peaks in the FTIR spectra showed a shift of the major XRD peaks when heated at 285 °C in N2 atmosphere. Regarding the effect of the vacancy on the adsorption behavior, for NH4, the adsorption was found to be proportional to the number of Na atoms in the material, confirming the ion-exchange process. On the contrary, the materials with low vacancy and high Na content showed nominal Cs adsorption capacity. Interestingly, the K adsorption capacity was found to be in between that of the other two ions. This means the ionic size decides the rate of placement into the interstitial sites. For larger ions like Cs, the ease of percolation via the vacancy decides the overall adsorption efficiency.  相似文献   

5.
The oil industry has been facing the challenges of separation of xylene isomers, o-xylene, m-xylene and p-xylene or removing them from the environment. In our present work, we investigated the adsorption of the three isomers on two mesoporous materials, FDU-15-350 polymer and FDU-15-900 carbon materials. The isomer adsorption capacities are well correlated with their physical pore properties. It is found that the micropores are very crucial for the adsorption of these three isomers. The more micropore volume the adsorbent has, the better the adsorption capacity is. Henry’s constants were also calculated for the three isomers on the two adsorbents. Both on FDU-15-350 polymer and FDU-15-900, the Henry’s constants for the three isomers show the same trend o>m>p xylene which is coincidently in accordance with their polarity trend, indicating more polar adsorbate is preferred for adsorption on the two adsorbents. The isosteric heats of adsorption are correlated with the microporosity and the size of the adsorbate molecule. More microporosity and smaller molecules give higher heats of adsorption. Extracted information on pore properties of adsorbents by using the three isomers has very similar results as that resolved from nitrogen adsorption, indicating the feasibility of using the three isomers as adsorbates to extract pore information. This work is devoted to commemorating the 60th birthday of Professor Mieczyslaw (Mietek) Jaroniec.  相似文献   

6.

In this study, the performance of modified adsorbents obtained from activated carbon for the adsorption of thorium(IV) ions from aqueous media was investigated. The analytical and spectroscopic methods such as FT-IR, BET, SEM and UV–Vis were used to examine the properties of the modified materials. According to the analysis results, the both adsorbents had large surface areas after modification. Then, temperature, pH, mixing time and solution concentration parameters were observed to determine optimum thorium adsorption conditions on modified materials. The obtained results from the experiments were applied different three kinetic models and adsorption isotherms and thermodynamic parameters were calculated and then all of the results were interpreted. The adsorption process for both adsorption systems was observed to be compatible with the pseudo-second-order kinetic model. The adsorption equilibrium data were best described by the Langmuir model for modified adsorbent with KMnO4 and by the Freundlich model for modified adsorbent with NaOH. Furthermore, the calculated thermodynamic parameters (ΔG°, ΔH° and ΔS°) showed that the both adsorption processes were endothermic and spontaneous. The data show that modified adsorbents can be used as influential and low-cost adsorbents to remove thorium ion. Modified new adsorbents were highly selective for thorium ion in competitive adsorption studies.

  相似文献   

7.
Abstract

Agro-waste materials have carboxylic and phenolic groups that play the main role in metal adsorption. The advantages of these materials include easy availability, low cost, and reasonable metal removal capacity. One of the materials (usually considered as waste) is pea waste (pods). Present work comprises adsorption of chromium from aqueous solution using powder of pods of garden peas (Pisum sativum) in batch. Important parameters like adsorbent dose, pH, contact time, and agitation speed were studied. Adsorption equilibrium was explained by Langmuir, Freundlich, and Temkin isotherms. Maximum chromium uptake (q m) was 3.56 mg/g of adsorbent. Heat of adsorption, as evaluated by Temkin isotherm was 1.96 kJ/mol. It is proposed that pea pods can be an effective and environmentally benign (green) adsorbents for removal of chromium from industrial effluents and waste waters.  相似文献   

8.
Computational prediction of adsorption of small molecules in porous materials has great impact on the basic and applied research in chemical engineering and material sciences. In this work, we report an approach based on grand canonical ensemble Monte Carlo (GCMC) simulations and ab initio force fields. We calculated the adsorption curves of ammonia in ZSM-5 zeolite and hydrogen in MOF-5 (a metal-organic-framework material). The predictions agree well with experimental data. Because the predictions are based on the first principle force fields, this approach can be used for the adsorption prediction of new molecules or materials without experimental data as guidance. Supported by the National “973” Program (Grant No. 2007CB209701, 2003CB615804)  相似文献   

9.
The characterization of the hydrophobic-hydrophilic properties of different types of microporous materials, namely activated carbons, pillared clays and zeolites, was made by the determination of water adsorption isotherms. The data were analysed by the Dubinin and Astakhov (D-A) equation. The use of the E parameter of the D-A equation as a measure of the hydrophobic-hydrophilic character is proposed. When the information obtained from the E parameter is compared with the information that can be obtained from other parameters used in the literature to characterize the hydrophobicity of materials, it is found that the former is more sensitive and is more directly related with the shape of the adsorption isotherms which, ultimately, is the more direct manifestation of the hydrophobic-hydrophilic properties of a given material.  相似文献   

10.
We combine density functional theory calculations and scanning tunneling microscopy investigations to identify the relevant chemical species and reactions in the nucleation phase of chemical vapor deposition. tert‐Butylphosphine (TBP) was deposited on a silicon substrate under conditions typical for surface functionalization and growth of semiconductor materials. On the activated hydrogen‐covered surface H/Si(001) it forms a strong covalent P?Si bond without loss of the tert‐butyl group. Calculations show that site preference for multiple adsorption of TBP is influenced by steric repulsion of the adsorbate's bulky substituent. STM imaging furthermore revealed an anisotropic distribution of TBP with a preference for adsorption perpendicular to the surface dimer rows. The adsorption patterns found can be understood by a mechanism invoking stabilization of surface hydrogen vacancies through electron donation by an adsorbate. The now improved understanding of nucleation in thin‐film growth may help to optimize molecular precursors and experimental conditions and will ultimately lead to higher quality materials.  相似文献   

11.
The suitability of LSV to study adsorption kinetics of metal ions was evaluated using Cu2+ adsorption on Amberlite® IR‐120 as a model system. LSV provided results in agreement with conventional batch method with remarkable decreasing on analysis time and reagents consumption, since no adsorbent/adsorbate separation is required. Adsorption curves can be obtained in situ using only one portion of adsorbate solution. LSV provides higher temporal resolution for adsorption curves, which is indispensable to evaluate adsorption mechanisms and the performance of new adsorbent materials. Therefore, LSV not only saves time and reagents but also provides better quality of kinetic adsorption data.  相似文献   

12.
Standard entropies of adsorption (Δs 0) of CO on different materials (Cu catalysts, Au catalysts, ZnO and to TiO2) are obtained from static adsorption microcalorimetry, adsorption isobars and temperature-programmed desorption, based on the thermodynamics of adsorption on energetically heterogeneous surfaces. Vibrational entropies of the surfaces s vibα are normally between the rotational and the standard translational entropy of CO in gas phase, and decrease with increasing adsorption energy, which agrees with the explanation of statistical thermodynamics. Δs 0 reflects both the mobility of adsorbates and the specific adsorbate-adsorbent interaction. Limits for reasonable values of the entropy of adsorption are proposed.  相似文献   

13.

Features of the adsorption of phosphatidylcholine (PCh) by inorganic silicon-containing materials with various degrees of order (MCM-41, MMC-1, and silica gel) from solutions in hexane under equilibrium conditions in the temperature range of 283–323 K are considered. It is found that the adsorption of the phospholipid within the C e = (0.6–4.0) × 10–4 mmol/dm3 range of concentrations on the investigated materials is characterized by monomolecular absorption. Differential thermodynamic characteristics (ΔG, ΔH, and ΔS) of the sorption of PCh by silicon-containing materials with various degrees of order in the temperature range of 283–323 K are considered. An increase in the affinity of silicon-containing materials toward the phospholipid upon an increase in the temperature of the sorption process is observed.

  相似文献   

14.
The adsorption properties of the new carbon materials, sibunites, which are mesoporous samples with a developed surface of pores, were studied. The isotherms of the adsorption of benzene vapor were determined to estimate the porous structure of these materials. The principal methods for calculating the parameters of the porous structure of sibunites were analyzed. The application of the BET equation even in the presence of a small number of micropores can distort the results, therefore the most suitable method for estimating the surface of mesopores is one that is based on the Dubinin—Zaverina equation. The estimation of the surface of sibunites using water vapor adsorption is demonstrated.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1377–1380, August, 1993.  相似文献   

15.
The adsorption properties of two new nanostructured hybrid materials containing B2O3 and ZrO2 were studied. The new organic-inorganic materials were synthesized via a sol-gel method. As a modifying agent, a quantity of 10 wt.% Zr(OPr)4 or B(OCH3)3 was added. The structure of the hybrid materials was investigated by means of (Fourier transform infrared spectroscopy (FTIR), x-ray diffractometry (XRD), scanning electron microscopy (SEM), (atomic force microscopy (AFM) and nuclear magnetic resonance spectroscopy (NMR). Based on the obtained data, the most probable cross-linking mechanism for the derived gels was proposed. The characterization of texture parameters of both materials was carried out with the use of low-temperature adsorption of nitrogen. Adsorption of Cu(II), Fe(III), Cr(III), Cd(II) and Pb(II) ions on both materials was investigated using multi-component solutions with different concentrations and acidity by means of the batch method. Kinetics of adsorption was also investigated. Pseudo-first order, pseudo-second order and intraparticle diffusion models were used to analyze kinetic data. The adsorption was significantly affected by the pH value. Equilibrium data were fitted to linear Langmuir, Freundlich and Dubinin-Radushkevich models and maximum adsorption capacities were calculated.   相似文献   

16.
Thermodynamic characteristics of adsorption of organic compounds on semiinterpenetrating networks based on polybenzimidazoles and polyaminoimide resin with different compositions were studied at small coverages using inverse gas chromatography. The following characteristics were determined: adsorption equilibrium constants (specific retention volumes) of substances of different classes (n-alkanes, aromatic hydrocarbons, ethers, ketones, alcohols, and nitrogen- and halogen-containing compounds), appropriate changes in differential molar internal energy and Helmholtz potential, and changes in standard molar entropy of the sorbates. The contributions of the molecular fragments to the heat of adsorption were calculated. The adsorption properties of the semiinterpenetrating networks based on polybenzimidazoles and polyaminoimide resin differ from those of the starting polymeric materials and their physical mixtures with the similar composition. Unlike graphitized thermal carbon black (nonspecific adsorbent), the network and starting materials manifest the specific properties (electron-donating and electron-accepting). The difference in the thermodynamic characteristics of adsorption on the semiinterpenetrating polymeric networks with different compositions is determined by the size and geometry of interphase regions.  相似文献   

17.
Three highly porous metal–organic frameworks (MOFs) with a uniform rht‐type topological network but hierarchical pores were successfully constructed by the assembly of triazole‐containing dendritic hexacarboxylate ligands with ZnII ions. These transparent MOF crystals present gradually increasing pore sizes upon extension of the length of the organic backbone, as clearly identified by structural analysis and gas‐adsorption experiments. The inherent accessibility of the pores to large molecules endows these materials with unique properties for the uptake of large guest molecules. The visible selective adsorption of dye molecules makes these MOFs highly promising porous materials for pore‐size‐dependent large‐molecule capture and separation.  相似文献   

18.
Bovine serum albumin imprinted magnetic microspheres, with functional monomers of modified chitosan, N‐isopropylacrylamide and sulfobetaine methacrylate, were successfully prepared and characterized in detail. Computational analyses showed that during the preparation process, modified chitosan can effortlessly form multiple non‐covalent bonds with protein molecules. Temperature‐sensitive N‐isopropylacrylamide improves the elution efficiency by abating the mass transfer resistance. Meanwhile, the zwitterionic sulfobetaine methacrylate strongly interacts with H2O molecules, remarkably reducing the non‐specific adsorption. The specific bovine serum albumin adsorption performances of the prepared imprinted material were then determined. The adsorption amount reached 86.87 mg/g and the imprinting factor was 6.49. These excellent specific adsorption properties are attributed to the synergetic effects of the different monomers. The fabricated imprinted material not only exhibits great prospects as a biosensor or separation material for protein molecules, but also provides a collaborative strategy for preparing multi‐functional imprinted materials.  相似文献   

19.
Four thermoresponsive silica-poly(N-isopropylacrylamide-co-butyl methacrylate) materials were prepared by grafting (N-isopropylacrylamide-co-butyl methacrylate) at different ratios on multimodal porous silica via surface-initiated atom transfer radical polymerization. The thermoresponsive materials were employed as the adsorbent for the rapid determination of sulfamerazine in river water by solid-phase extraction. The properties of silica-poly(N-isopropylacrylamide-co-butyl methacrylate) were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Static adsorption measurements showed that the silica-poly(N-isopropylacrylamide-co-butyl methacrylate)3 material had the highest adsorption characteristics (8.72?mg?g?1) at 35°C. The solid-phase extraction conditions were optimized, including the elution solvent and its volume used. The thermoresponsive silica-poly(N-isopropylacrylamide-co-butyl methacrylate)3 material provided satisfactory results for solid-phase extraction, with a recovery of 90.06%, allowing the rapid purification of sulfamerazine in river water.  相似文献   

20.
Eggshell particles (ESP), a solid bio-waste, treated with sodium dodecylsulfate (SDS) have been examined for the adsorption of some tailor-made cationic styrylpyridinium dyes. The adsorbent is characterized through Fourier transform infrared spectroscopy and scanning electron microscopy. The anionic headgroups of the surfactant bilayer on the SDS-treated ESP (SDS-ESP) provide avenue for binding with the dye molecules. Dependence of equilibrium adsorption capacity on various adsorption parameters and effects of substituent and hydrophobic tail of the adsorbate on adsorption are enumerated. Physical adsorption obeying pseudo-second order kinetics has been proposed. (Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Dispersion Science and Technology to view the free supplemental file.)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号