首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   959篇
  免费   36篇
  国内免费   17篇
化学   753篇
晶体学   21篇
力学   25篇
数学   36篇
物理学   177篇
  2024年   6篇
  2023年   9篇
  2022年   34篇
  2021年   103篇
  2020年   37篇
  2019年   39篇
  2018年   59篇
  2017年   33篇
  2016年   62篇
  2015年   49篇
  2014年   58篇
  2013年   68篇
  2012年   104篇
  2011年   102篇
  2010年   62篇
  2009年   35篇
  2008年   24篇
  2007年   22篇
  2006年   17篇
  2005年   17篇
  2004年   8篇
  2003年   10篇
  2002年   6篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1997年   2篇
  1996年   1篇
  1994年   4篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1981年   1篇
  1980年   3篇
  1977年   1篇
  1975年   2篇
  1936年   1篇
  1935年   1篇
  1933年   1篇
排序方式: 共有1012条查询结果,搜索用时 15 毫秒
81.
The aim of this study was to develop cellulose nanofibers with hydrophobic surface characteristics using chemical modification. Kenaf fibers were modified using acetic anhydride and cellulose nanofibers were isolated from the acetylated kenaf using mechanical isolation methods. Fourier transform infrared spectroscopy (FTIR) indicated acetylation of the hydroxyl groups of cellulose. The study of the dispersion demonstrated that acetylated cellulose nanofibers formed stable, well-dispersed suspensions in both acetone and ethanol. The contact angle measurements showed that the surface characteristics of nanofibers were changed from hydrophilic to more hydrophobic when acetylated. The microscopy study showed that the acetylation caused a swelling of the kenaf fiber cell wall and that the diameters of isolated nanofibers were between 5 and 50 nm. X-ray analysis showed that the acetylation process reduced the crystallinity of the fibers, whereas mechanical isolation increased it. The method used provides a novel processing route for producing cellulose nanofibers with hydrophobic surfaces.  相似文献   
82.
Coir fiber from coconut husk is an important agricultural waste in Malaysia. Acoustic absorption coefficient of the fiber as a porous material is studied in this paper. Two types of fiber are investigated, fresh from wet market and industrial prepared mixed with binder. Moreover two analytical models, namely; Delany–Bazley and Biot–Allard are used for analysis. Experimental measurements in impedance tube are conducted to validate the analytical outcomes. Results show that fresh coir fiber has an average absorption coefficient of 0.8 at f > 1360 Hz and 20 mm thickness. Increasing the thickness is improved the sound absorption in lower frequencies, having the same average at f > 578 Hz and 45 mm thickness. Delany–Bazley technique can be used for both types of fiber while Biot–Allard method is compensated for the industrial prepared fiber considering the binder additive. This form generally shows poor acoustical absorption in low frequencies. Inevitably, fiber has to be mixed with additives in commercial use to enhance its characteristics such as stiffness, unti-fungus and flammability. Hence other approaches such as adding air gap or perforated plate should be used to improve the acoustical properties of industrial treated coir fiber.  相似文献   
83.
Raman and Fourier transform infrared (FTIR) spectroscopies have been utilized to measure long-wavelength optical lattice vibrations of high-quality quaternary AlxInyGa1−x−yN thin films at room temperature. The AlxInyGa1−x−yN films were grown on c-plane (0 0 0 1) sapphire substrates with AlN as buffer layers using plasma assisted molecular beam epitaxy (PA-MBE) technique with aluminum (Al) mole fraction x ranging from 0.0 to 0.2 and constant indium (In) mole fraction y=0.1. Pseudo unit cell (PUC) model was applied to investigate the phonons frequency, mode number, static dielectric constant, and high frequency dielectric constant of the AlxInyGa1−x−yN mixed crystals. The theoretical results were compared with the experimental results obtained from the quaternary samples by using Raman and FTIR spectroscopies. The experimental results indicated that the AlxInyGa1−x−yN alloy had two-mode behavior, which includes A1(LO), E1(TO), and E2(H). Thus, these results are in agreement with the theoretical results of PUC model, which also revealed a two-mode behavior for the quaternary nitride. We also obtained new values of E1(TO) and E2(H) for the quaternary nitride samples that have not yet been reported in the literature.  相似文献   
84.
Li-ion rechargeable batteries based on polymer electrolytes are of great interest for solid state electrochemical devices nowadays. Many studies have been carried out to improve the ionic conductivity of polymer electrolytes, which include polymer blending, incorporating plasticizers and filler additives in the electrolyte systems. This paper describes the effects of incorporating nano-sized MnO2 filler on the ionic conductivity enhancement of a plasticized polymer blend PMMA–PEO–LiClO4–EC electrolyte system. The maximum conductivity achieved is within the range of 10−3 S cm−1 by optimizing the composition of the polymers, salts, plasticizer, and filler. The temperature dependence of the polymer conductivity obeys the VTF relationship. DSC and XRD studies are carried out to clarify the complex formation between the polymers, salts, and plasticizer.  相似文献   
85.
This paper presents the decomposition by-products of trifluro-iodo-methane and their relative proportions in the gas phase under the occurrence of partial discharge. The experiment was performed in the presence of water vapor from 250 to 400 ppm under a non-uniform electric field configuration. The experimental results reveal that the by-products of C2F6, C2F4, C2F5I with the amount of 1300, 200, and 55 (CH3I) ppm, respectively, were produced for a cumulative charge of 161 mC. Other by-products, such as C3F8, CHF3, C3F6 CH3I were obtained at less than 30 ppm C2F6 was the dominant gas by-product of trifluro-iodo-methane suffering partial discharge.  相似文献   
86.
A metallic nanofluid is a suspension of metallic nanoparticles in a base fluid. Multi-metallic nanoparticles are a combination of two or more types of metallic particles. Such multi-metallic nanoparticles were suspended in water using an ultrasonic vibrator for different total volume fractions and different ratios of metallic/metallic nanoparticles. A transient hot wire setup was built to measure the thermal conductivity of the nanofluid at different temperatures. The experimental results were in good agreement with the results in the literature. Then, the experimental results were used as input data for an adaptive neural fuzzy inference system (ANFIS) to predict the thermal conductivity of the multi-metallic nanofluid. The maximum deviation between the ANFIS results and experimental measurements was 1 %. The predicted results and the experimental data were compared with other models. The ANFIS model was found to have good ability to predict the thermal conductivity of the multi-metallic nanofluid over the range of the experimental results.  相似文献   
87.
Styrene polymerization via generation of activators by monomer addition (GAMA) for atom transfer radical polymerization (ATRP) has been examined extensively with bulk FeX3 and FeX2 at 110 °C in conjunction with various phosphorus‐bearing ligands. It was found that GAMA possesses advantages over normal ATRP. Most importantly, narrower polydispersity index (PDI) values were observed from the styrene polymerizations with Fe(III) over those with Fe(II). Every instance of 2‐(diphenylphosphino)‐N,N′‐dimethyl‐[1,1′‐biphenyl]‐2‐amine and 2‐(diphenylphosphino) pyridine with the Fe(III) system were controlled excellently without addition of any radical initiator or reducing agent additives. Initiator type was found to exert a significant factor to influence on the controllability of polymerization. The initiation of 1‐phenylethyl chloride and methyl‐2‐chloropropionate gave rise to formation of polymers with narrow PDI (1.05–1.20), whereas those from 1‐phenylethyl bromide increased to 1.35. The GAMA of bulk styrene exhibited the best performance in terms of both rate and controllability compared with toluene and anisole. Both formation of block copolymer from the macroinitiator and efficient perturbation of polymerization with 2,2,6,6‐tetramethylpiperidine 1‐oxyl provided firm evidence to support the living and radical characteristics for the GAMA of styrene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 144–151, 2010  相似文献   
88.
The electronic structures of carbazole, N-phenylcarbazole (NPC), cyanophenylcarbazole (CPC) and N-ethylcarbazole (NEC) have been calculated using the quantum chemical semi-empirical MINDO/3 method. In this paper, electronic ground states and first singlet excited states of the systems mentioned were investigated. It is observed that the excitation energy of carbazole based on the calculated difference in heats of formation agrees quite well with experimental data obtained from supersonic expansion studies. Calculated energy levels of molecular orbitals and their graphical forms are used qualitatively in elucidating the S0S1 excitation electronic origin red shifts observed in carbazole derivatives with respect to the electronic origin of the parent carbazole. It is noted that the red shifts are not just a result of the destabilization of the HOMO of carbazole but are also determined by the nature of the substituting moieties. It is also observed that the LUMO of CPC is not derived from the parent carbazole which partially explains the difference in electronic behaviour as compared with the other derivatives.  相似文献   
89.
The sonochemical synthesis of gold nanoparticles (GNPs) with different shapes and size distributions by using high‐intensity focused ultrasound (HIFU) operating at 463 kHz is reported. GNP formation proceeds through the reduction of Au3+ to Au0 by radicals generated by acoustic cavitation. TEM images reveal that GNPs show irregular shapes at 30 W, are primarily icosahedral at 50 W and form a significant amount of nanorods at 70 W. The size of GNPs decreases with increasing acoustic power with a narrower size distribution. Sonochemiluminescence images help in the understanding of the effect of HIFU in controlling the size and shapes of GNPs. The number of radicals that form and the mechanical forces that are generated control the shape and size of the GNPs. UV/Vis spectra and TEM images are used to propose a possible mechanism for the observed effects. The results presented demonstrate, for the first time, that the HIFU system can be used to synthesise size‐ and shape‐controlled metal nanoparticles.  相似文献   
90.
Erythrocentaurin is a relatively simple natural product present among the members of Gentianaceae. A preparative method for the isolation of erythrocentaurin from the ethyl acetate fraction of Enicostemma littorale using medium‐pressure liquid chromatography has been reported. The method consisted of a simple step gradient from 10 to 20% ethyl acetate in n‐hexane. Using a 70 × 460 mm Si60 column, this method is capable of processing 20 g of material in <3 h (purity ≈ 97%). The recovery of erythrocentaurin was 87.77%. Estimation of erythrocentaurin in extracts and fractions based on high‐pressure thin‐layer chromatography was carried out on silica gel 60 F254 plates with toluene/ethyl acetate/formic acid (80:18:2 v/v/v) as the mobile phase. The densitometric analysis was performed at 230 nm. A well‐separated compact band of erythrocentaurin appeared at Rf 0.54 ± 0.04. The analytical method showed good linearity in the concentration range of 200–1500 ng/band with a correlation coefficient of 0.99417. The limits of detection and quantification were found to be ≈60 and ≈180 ng/band, respectively. Erythrocentaurin exhibited a concentration‐dependent α‐amylase inhibition (IC50 1.67 ± 0.28 mg/mL). The outcome of the study should be considered for pharmacokinetic and biotransformation studies involving E. littorale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号