首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A rapid and efficient method using high‐speed counter‐current chromatography was established for the bioassay‐guided separation of an active compound with protein tyrosine phosphatase 1B inhibitory activity from Sargassum fusiforme. Under the bioassay guidance, the ethyl acetate extract with the best IC50 value of 0.37 ± 0.07 μg/mL exhibited a potential protein tyrosine phosphatase 1B inhibitory activity, which was further separated by high‐speed counter‐current chromatography. The separation was performed with a two‐phase solvent system composed of n‐hexane/methanol/water (5:4:1, v/v). As a result, dibutyl phthalate (19.7 mg) with the purity of 95.3% was obtained from 200 mg of the ethyl acetate extract. Its IC50 was 14.05 ± 0.06 μM, which was further explained by molecular docking. The result of molecular docking showed that dibutyl phthalate enfolded in the catalytic site of protein tyrosine phosphatase 1B. The main force between dibutyl phthalate and protein tyrosine phosphatase 1B was the hydrogen bond interaction with Gln266. In addition, hydrogen bond, van der Waals force and hydrophobic interaction with the amino acids (Ala217, Ile219, and Gly220) were also responsible for the stable protein‐ligand complex.  相似文献   

2.
Melodamide A, a phenolic amide from the leaves of Melodorum fruticosum Lour., has previously shown pronounced anti‐inflammatory activity. In order to rapidly isolate larger quantities for biological testing, a fast, one‐step isolation method by centrifugal partition chromatography was developed within this study. Fractionation of the dichloromethane extract was performed with a two‐phase solvent system consisting of n‐hexane, ethyl acetate, methanol, and water (3:7:5:5, v/v), leading to the isolation of melodamide A with a purity of >90% and a yield of 6.7 w% within 32 min. The developed method can also be used in dual mode for the enrichment of further constituents like flavonoids or chalcones. In order to support the centrifugal partition chromatography method development, additionally, a high‐performance liquid chromatography method was established and validated to determine quantities of melodamide A in plant material and crude extracts. Analysis of M. fruticosum leaves and a dichloromethane extract obtained from this plant material showed a total melodamide A content of 0.19 ± 0.008 and 8.9 ± 0.249 w%, respectively.  相似文献   

3.
Stilbenoids are the main components of leaves and stems of Pholidota chinensis. In the present investigation, high‐speed counter‐current chromatography was used for the separation and purification of two classes of stilbenoids, namely, bibenzyls and 9,10‐dihydrophenanthrenes, on a preparative scale from whole plants of P. chinensis with different solvent systems after silica gel column chromatography fractionation. n‐Hexane/ethyl acetate/methanol/water (1.2:1:1:0.8, v/v/v/v) was selected as the optimum solvent system to purify 1‐(3,4,5‐trimethoxyphenyl)‐1′,2′‐ethanediol ( 1 ), coelonin ( 2 ), 3,4′‐dihydroxy‐5,5′‐dimethoxybibenzyl ( 3 ), and 2,?7‐?dihydroxy‐?3,?4,?6‐?trimethoxy‐?9,?10‐?dihydrophenanthrene ( 4 ). While 2,7‐dihydroxy‐3,4,6‐trimethoxy‐?9,?10‐?dihydrophenanthrene ( 5 ), batatasin III ( 6 ), orchinol ( 7 ), and 3′‐O‐methylbatatasin III ( 8 ) were purified by n‐hexane/ethyl acetate/methanol/water (1.6:0.8:1.2:0.4, v/v/v/v). After the high‐speed counter‐current chromatography isolation procedure, the purity of all compounds was over 94% assayed by ultra high performance liquid chromatography. The chemical structure identification of all compounds was carried out by mass spectrometry and 1H and 13C NMR spectroscopy. To the best of our knowledge, the current investigation is the first study for the separation and purification of bibenzyls and 9,10‐dihydrophenanthrenes by high‐speed counter‐current chromatography from natural resources.  相似文献   

4.
C19‐diterpenoid alkaloids are the main components of Aconitum duclouxii Levl. The process of separation and purification of these compounds in previous studies was tedious and time consuming, requiring multiple chromatographic steps, thus resulted in low recovery and high cost. In the present work, five C19‐diterpenoid alkaloids, namely, benzoylaconine ( 1 ), N‐deethylaconitine ( 2 ), aconitine ( 3 ), deoxyaconitine ( 4 ), and ducloudine A ( 5 ), were efficiently prepared from A. duclouxii Levl (Aconitum L.) by ethyl acetate extraction followed with counter‐current chromatography. In the process of separation, the critical conditions of counter‐current chromatography were optimized. The two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water/NH3·H2O (25%) (1:1:1:1:0.1, v/v) was selected and 148.2 mg of 1 , 24.1 mg of 2 , 250.6 mg of 3 , 73.9 mg of 4, and 31.4 mg of 5 were obtained from 1 g total Aconitum alkaloids extract, respectively, in a single run within 4 h. Their purities were found to be 98.4, 97.2, 98.2, 96.8, and 96.6%, respectively, by ultra‐high performance liquid chromatography analysis. The presented separation and purification method was simple, fast, and efficient, and the obtained highly pure alkaloids are suitable for biochemical and toxicological investigation.  相似文献   

5.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

6.
An effective high‐speed countercurrent chromatography method was successfully established by using ionic liquids as the modifier of the two‐phase solvent system. Adding a small amount of ionic liquids significantly shortens the separation time and improves the separation efficiency. The conditions of ionic‐liquid‐modified high‐speed countercurrent chromatography including solvent systems, types and content of added ionic liquids, and ionic liquids posttreatment were investigated. The established method was successfully applied to separate alkaloids from lotus leaves using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water/[C4mim][BF4] (1:5:1:5:0.15, v/v/v/v/v). Four alkaloids pronuciferine (1.7 mg), N‐nornuciferine (4.3 mg), nuciferine (3.1 mg), and roemerine (2.1 mg) were obtained with the purities of 90.53, 92.25, 99.86, and 98.63%, respectively, from 100 mg crude extract of lotus leaves. The results indicated that the ionic‐liquid‐modified high‐speed countercurrent chromatography method was suitable for alkaloid separation from lotus leaves and would be a promising method for the separation of alkaloids from other natural products.  相似文献   

7.
A rapid and selective liquid chromatography/tandem mass spectrometric method was developed for the simultaneous determination of capecitabine and its metabolites 5′‐deoxy‐5‐fluorocytidine (5′‐DFCR), 5′‐deoxy‐5‐fluorouracil (5′‐DFUR), 5‐fluorouracil (5‐FU) and dihydro‐5‐fluorouracil (FUH2) in human plasma. A 200 μL human plasma aliquot was spiked with a mixture of internal standards fludarabine and 5‐chlorouracil. A single‐step protein precipitation method was employed using 10% (v/v) trichloroacetic acid in water to separate analytes from bio‐matrices. Volumes of 20 μL of the supernatant were directly injected onto the HPLC system. Separation was achieved on a 30 × 2.1 mm Hypercarb (porous graphitic carbon) column using a gradient by mixing 10 mm ammonium acetate and acetonitrile–2‐propanol–tetrahydrofuran (1 : 3 : 2.25, v/v/v). The detection was performed using a Finnigan TSQ Quantum Ultra equipped with the electrospray ion source operated in positive and negative mode. The assay quantifies a range from 10 to 1000 ng/mL for capecitabine, from 10 to 5000 ng/mL for 5′‐DFCR and 5′‐DFUR, and from 50 to 5000 ng/mL for 5‐FU and FUH2 using a plasma sample of 200 μL. Correlation coefficients (r2) of the calibration curves in human plasma were better than 0.99 for all compounds. At all concentration levels, deviations of measured concentrations from nominal concentration were between ?4.41 and 3.65% with CV values less than 12.0% for capecitabine, between ?7.00 and 6.59% with CV values less than 13.0 for 5′‐DFUR, between ?3.25 and 4.11% with CV values less than 9.34% for 5′‐DFCR, between ?5.54 and 5.91% with CV values less than 9.69% for 5‐FU and between ?4.26 and 6.86% with CV values less than 14.9% for FUH2. The described method was successfully applied for the evaluation of the pharmacokinetic profile of capecitabine and its metabolites in plasma of treated cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, high‐speed counter‐current chromatography (HSCCC), assisted with ESI‐MS, was first successfully applied to the preparative separation of three macrolide antibiotics, brefeldin A (12.6 mg, 99.0%), 7′‐O‐formylbrefeldin A (6.5 mg, 95.0%) and 7′‐O‐acetylbrefeldin A (5.0 mg, 92.3%) from the crude extract of the microbe Penicillium SHZK‐15. Considering the chemical nature and partition coefficient (K) values of the three target compounds, a two‐step HSCCC isolation protocol was developed in order to obtain products with high purity. In the two‐step method, the crude ethyl acetate extract was first fractionated and resulted in two peak fractions by HSCCC using solvent system n‐hexane/ethyl acetate/methanol/water (HEMWat) (3:7:5:5 v/v/v/v), then purified using solvent systems HEMWat (3:5:3:5 v/v/v/v) and HEMWat (7:3:5:5 v/v/v/v) for each fraction. The purities and structures of the isolated compounds were determined by HPLC, X‐ray crystallography, ESI‐MS and NMR. The results demonstrated that HSCCC is a fast and efficient technique for systematic isolation of bioactive compounds from the microbes.  相似文献   

9.
A sensitive, specific and efficient high‐performance liquid chromatography/tandem mass spectrometry assay for the simultaneous determination of vinorelbine and its metabolite 4‐O‐deacetylvinorelbine in human and mouse plasma is presented. Heated electrospray ionization was applied followed by tandem mass spectrometry. A 50 µL plasma aliquot was protein precipitated with acetonitrile–methanol (1:1, v/v) containing the internal standard vinorelbine‐d3 and 20 µL volumes were injected onto the HPLC system. Separation was achieved on a 50 × 2.1 mm i.d. Xbridge C18 column using isocratic elution with 1 mm ammonium acetate–ammonia buffer pH 10.5–acetonitrile–methanol (28:12:60, v/v/v) at a flow rate of 0.4 mL/min. The HPLC run time was 5 min. The assay quantifies both vinorelbine and 4‐O‐deacetylvinorelbine from 0.1 to 100 ng/mL using sample volumes of only 50 µL. Mouse plasma samples can be quantified using calibration curves prepared in human plasma. Validation results demonstrate that vinorelbine and 4‐O‐deacetylvinorelbine can be accurately and precisely quantified in human and mouse plasma with the presented method. The assay is now in use to support (pre‐)clinical pharmacologic studies with vinorelbine in humans and mice. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Millettia griffithii is a unique Chinese plant located in the southern part of Yunnan Province. Up to now, there is no report about its phytochemical or related bioactivity research. In our previous study, the n‐hexane crude extract of Millettia griffithii revealed significant anti‐inflammatory activity at 100 μg/mL, inspiring us to explore the anti‐inflammatory constituents. Four fractions (I, II, III, and A) were fractionated from n‐hexane crude extract by high‐performance counter‐current chromatography with solvent system composed of n‐hexane/ethyl acetate/methanol/water (8:9:8:9, v/v) and then were investigated for the potent anti‐inflammatory activity. Fraction A, with the most potent inhibitory activity was further separated to give another four fractions (IV, V, VI, and B) with solvent system composed of n‐hexane/ethyl acetate/methanol/water (8:4:8:4, v/v). Compound V and fraction B exhibited remarkable anti‐inflammatory activity with nitric oxide inhibitory rate of 80 and 65%, which was worth further fractionation. Then, three fractions (VII, VIII, and IX) were separated from fraction B with a solvent system composed of n‐hexane/ethyl acetate/methanol/water (8:1:8:1, v/v), with compound VIII demonstrating the most potent inhibitory activity (80%). Finally, the IC50 values of compound V and VIII were tested as 38.2 and 14.9 μM. The structures were identified by electrospray ionization mass spectrometry and1H and 13C NMR spectroscopy.  相似文献   

11.
An off‐line 2D high‐speed counter‐current chromatography technique in preparative scale has been successfully applied to separate and purify the main compounds from the ethyl acetate extract of Desmodium styracifolium. A two‐phase solvent system composed of n‐hexane/ethyl acetate/methanol/water at an optimized volume ratio of 1:2:1:2 v/v/v/v was used. Conventional high‐speed counter‐current chromatography was used as the first dimension, and the upper phase of the solvent system was used as the stationary phase in the head‐to‐tail elution mode at a flow rate of 2.0 mL/min and a rotation speed of 900 rpm. Recycling high‐speed counter‐current chromatography served as the second dimension to separate an impure fraction of the first dimension. A total of four well‐separated substances including vanillic acid ( 1 ), β‐sitosterol ( 2 ), formononetin ( 3 ), and aromadendrin ( 4 ) were obtained, and their purities and structures were identified by HPLC–MS and 1H NMR spectroscopy. The results illustrated that off‐line 2D high‐speed counter‐current chromatography is an effective way to isolate compounds in complex samples.  相似文献   

12.
A simple, sensitive, selective and precise high‐performance thin‐layer chromatographic method was developed for determination of lipid A (MPLA) adjuvant as a bulk and in solid fat nanoemulsions. Chromatographic separations were performed on thin‐layer chromatography aluminum plates precoated with silica gel 60 F‐254 as stationary phase and chloroform–methanol–ethyl acetate solution (10:2:4, v/v/v) as mobile phase. With this solvent system, compact spots for MPLA at Rf value 0.80 ± 0.02 were obtained. Densitometric analysis of MPLA was carried out in absorbance mode at 357 nm. Linear regression analysis for the calibration plots showed good linear relationship with r = 0.9996 in the concentration range of 20–100 ng/spot. The mean values (±SD) of slope and intercept were found to be 7.355 ± 0.006 and 109.52 ± 0.170, respectively. Limits of detection (LOD) and quantitation (LOQ) were observed at 3.096 and 9.382 ng/spot, respectively.The method was validated for precision, accuracy, robustness and recovery as per the International Conference on Harmonization guidelines. Statistical analysis proved that the developed method for quantification of MPLA as a bulk and in solid fat nanoemulsions is reproducible, selective and economical. This method could be applied for quantitative assay of MPLA in lipid‐based vaccine formulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Ganoderic acid S, ganoderic acid T and ganoderal B are the main bioactive triterpenes of Ganoderma lucidum. In this study, mycelia of G. lucidum were obtained by two‐stage fermentation and then extracted by ethanol and petroleum ether sequentially to obtain crude triterpenes. The crude sample was further purified by recycling high‐speed counter‐current chromatography with n‐hexane–ethyl acetate–methanol–water (7:12:11:5, v/v/v/v) as the optimized two‐phase solvent system. A 16.4 mg aliquot of ganoderol B with a purity of 90.4% was separated from 300 mg of the crude sample in a single run. After employing the recycling elution mode of HSCCC with n‐hexane–ethyl acetate–methanol–water (6:10:8:4.5, v/v/v/v) for five cycles, 25.7 mg ganoderic acid T and 3.7 mg ganoderic acid S with purities of 97.8 and 83.0%, respectively, were obtained. The purities of three compounds were determined by high‐performance liquid chromatography and their chemical structures were identified by NMR and MS data.  相似文献   

14.
A preparative high‐speed countercurrent chromatography method was successfully used for the isolation of five minor flavones from Polygonum cuspidatum flowers. Among them, three compounds were obtained from P. cuspidatum for the first time. A twin two‐phase solvent system composed of n‐hexane/ethyl acetate/ethanol/water (1:6:3:6, v/v/v/v) and petroleum ether/ethyl acetate/methanol/water (2:4:3:3, v/v/v/v) was developed. Compounds were obtained from the fraction B and fraction C prepurified by silica gel column chromatography. Five minor compositions, 6.8 mg of hesperidin, 11.2 mg of phloridzin, 4.9 mg of luteolin, 5.3 mg of hyperin, and 3.7 mg of luteoloside were obtained from 140 mg of the fraction B and 110 mg of fraction C with a purity of 95.3, 96.4, 98.0, 96.8, and 95.3%, respectively, as determined by high‐performance liquid chromatography. The structures of these compounds were identified by 1H and 13C NMR spectroscopy.  相似文献   

15.
Apocynin, androsin, together with picroside I, II and III from crude extracts of Picrorhiza scrophulariiflora were isolated by means of high‐speed counter‐current chromatography (CCC) combining elution‐extrusion (EE) and cycling‐elution (CE) approach. The EECCC took full advantages of the liquid nature of the stationary phase for a complete sample recovery and extended the solute hydrophobicity window, while CECCC showed its unique advantage in achieving effective separation of special compounds through preventing stationary phase loss. In the present work, the biphasic liquid system composed of n‐hexane/ethyl acetate/methanol/water (1:2:1:2, v/v/v/v) was used for separation of apocynin and androsin, ethyl acetate/n‐butanol/water/formic acid (4:1:5:0.005, v/v/v/v) for picroside I, II and III. However, due to the extremely similar K values (K1/K2≈1.2), picroside I and III were always eluted together by several biphasic solvent systems. In this case, the CECCC exhibited great superiority and baseline separated in the sixth cycle using ethyl acetate/water (1:1, v/v) as biphasic liquid system. Each fraction was analyzed by UPLC‐UV and ESI‐MS analysis, and identified by comparing with the data of reference substances. Compared with classical elution, the combination of EE and CE approach exhibits strong separation efficiency and great potential to be a high‐throughput separation technique in the case of complex samples.  相似文献   

16.
Eleven compounds were successfully separated from Asteris souliei by using a two‐step high‐performance counter‐current chromatography method. The first step involved a reversed phase isocratic counter‐current chromatography separation using hexane/ethyl acetate/methanol/water (1:0.8:1:1 v/v/v/v), which produced three fractions, the first two of which were mixtures. The second step used step‐gradient reversed‐phase counter‐current chromatography with hexane/butanol/ethyl acetate/methanol/water (1:0.5:3.5:1:4 v/v/v/v/v) initially followed by hexane/ethyl acetate/methanol/water (1:2:1:2 v/v/v/v) to separate Fraction 1 into seven compounds; and hexane/ethyl acetate/methanol/water (1:1:1:1.2 v/v/v/v) to separate Fraction 2 into three further compounds. The chemical structures of the separated compounds were identified by ESI‐MS and NMR spectroscopy (1H and 13C). Baicalin ( 5 ), eriodictyol ( 7 ), apigenin‐7‐glycoside ( 8 ), quercetin ( 9 ), luteolin ( 10 ), and apigenin ( 11 ) showed obvious inhibitory effects on lipopolysaccharide‐induced nitric oxide production in RAW264.7 cells at a concentration of 10 μg/mL.  相似文献   

17.
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography for the first time. pH‐zone‐refining counter‐current chromatography was performed with the solvent system composed of n‐hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high‐speed counter‐current chromatography with a solvent system composed of n‐hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n‐hexane/methyl tert‐butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β‐morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high‐performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones.  相似文献   

18.
The combination of sofosbuvir and daclatasvir or sofosbuvir and ledipasvir is now widely used as an ideal treatment for hepatitis C virus infection. For this purpose, a simple, sensitive, accurate, economic, and precise high‐performance thin‐layer chromatography was developed and validated for the determination of sofosbuvir, daclatasvir, and ledipasvir in their pure form as well as their different pharmaceutical products. The method used Merck high‐performance thin‐layer chromatography aluminum plates precoated with silica gel 60 F254 as a stationary phase and mobile phase consisting of methylene chloride/methanol/ethyl acetate/ammonia (25%) (6:1:4:1, v/v/v/v). This system was found to give compact symmetric peaks of sofosbuvir, daclatasvir, and ledipasvir with retardation factors of 0.27 ± 0.01, 0.50 ± 0.007, and 0.68 ± 0.008, respectively. The densitometric scanner was set at 275 nm using a deuterium lamp. The calibration curves were linear over the range of 100–3000 ng/spot for sofosbuvir, and daclatasvir, and range of 50–3000 ng/spot for ledipasvir. The detection limits were 22.5, 31.90, and 15.80 for sofosbuvir, daclatasvir, and ledipasvir. The quantitation limits were 67.50, 95.60, and 47.50 for sofosbuvir, daclatasvir, and ledipasvir. The proposed method was validated according to International Conference on Harmonization (ICH) guidelines and the results were acceptable.  相似文献   

19.
A new, simple, accurate and precise high‐performance thin‐layer chromatographic method has been developed and validated for simultaneous determination of an anthelmintic drug, albendazole, and its active metabolite albendazole, sulfoxide. Planar chromatographic separation was performed on aluminum‐backed layer of silica gel 60G F254 using a mixture of toluene–acetonitrile–glacial acetic acid (7.0:2.9:0.1, v /v/v) as the mobile phase. For quantitation, the separated spots were scanned densitometrically at 225 nm. The retention factors (R f) obtained under the established conditions were 0.76 ± 0.01 and 0.50 ± 0.01 and the regression plots were linear (r 2 ≥ 0.9997) in the concentration ranges 50–350 and 100–700 ng/band for albendazole and albendazole sulfoxide, respectively. The method was validated for linearity, specificity, accuracy (recovery) and precision, repeatability, stability and robustness. The limit of detection and limit of quantitation found were 9.84 and 29.81 ng/band for albendazole and 21.60 and 65.45 ng/band for albendazole sulfoxide, respectively. For plasma samples, solid‐phase extraction of analytes yielded mean extraction recoveries of 87.59 and 87.13% for albendazole and albendazole sulfoxide, respectively. The method was successfully applied for the analysis of albendazole in pharmaceutical formulations with accuracy ≥99.32%.  相似文献   

20.
A simple, precise, and rapid high‐performance thin‐layer chromatographic (HPTLC) method for the simultaneous quantification of pharmacologically important naphthoquinone shikonin ( 1 ) together with its derivatives acetylshikonin ( 2 ), and β‐acetoxyisovalerylshikonin ( 3 ) in four species of genus Arnebia (A. euchroma, A. guttata, A. benthamii, and A. hispidissima) from the Indian subcontinent has been developed. In addition, the effect of solvents with varying polarity (hexane, chloroform, ethyl acetate, and methanol) for the extraction of these compounds was studied. HPTLC was performed on precoated RP‐18 F254S TLC plates. For achieving good separation, mobile phase consisting of ACN/methanol/5% formic acid in water (40:02:08 v/v/v) was used. The densitometric determination of shikonin derivatives was carried out at 520 nm in reflection/absorption mode. The method was validated in terms of linearity, accuracy, precision, robustness, and specificity. The calibration curves were linear in the range of 100–600 ng for shikonin and acetylshikonin, and 100–1800 ng for β‐acetoxyisovalerylshikonin. Lower LOD obtained for compounds 1 – 3 were 18, 15, and 12 ng, respectively, while the LOQ obtained were 60, 45, and 40 ng, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号