首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biological synthesis of gold nanoparticles (AuNPs) of various shapes (triangle, hexagonal, and spherical) using hot water olive leaf extracts as reducing agent is reported. The size and the shape of Au nanoparticles are modulated by varying the ratio of metal salt and extract in the reaction medium. Only 20 min were required for the conversion into gold nanoparticles at room temperature, suggesting a reaction rate higher or comparable to those of nanoparticles synthesis by chemical methods. The variation of the pH of the reaction medium gives AuNPs nanoparticles of different shapes. The nanoparticles obtained are characterized by UV–Vis spectroscopy, photoluminescence, transmission electron microscopy (TEM), X-ray diffraction (XRD), FTIR spectroscopy and thermogravimetric analysis. The TEM images showed that a mixture of shapes (triangular, hexagonal and spherical) structures was formed at lower leaf broth concentration and high pH, while smaller spherical shapes were obtained at higher leaf broth concentration and low pH.  相似文献   

2.
Silver nanoparticles were synthesized by the reduction of the silver nitrate (AgNO3) using the latex copolymer in ethanol solution under microwave (MW) heating. The reaction parameters such as silver precursor concentration (from 0.005 to 0.1 g/l) and MW power (200–800 W) significantly affect the formation rate, shape, size and distribution of the silver nanoparticles. A significant reduction of irradiation time was observed when the MW energy is compared to conventional thermal reduction processes. The prepared silver nanoparticles show uniform and stable sizes from 5 to 11 nm, which can be stored at room temperature for approximately 12 months without any visible change. These peculiarities indicate that the latex copolymer is a good stabilizer for the silver nanoparticles. The optical properties, morphology, and crystalline structure of the silver-latex copolymer nanocomposites were characterized by the Ultraviolet–Visible spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The study of the TEM images at high magnifications identified the silver nanoparticles as face-centered cubic (fcc) structure with spherical and hexagonal shapes.  相似文献   

3.
The application of chemical‐modified gold nanoparticles (GNPs) as chiral selector for the enantioseparation based on pseudostationary phase‐CEC (PSP‐CEC) is presented. GNPs modified by thiolated β‐CD were characterized by NMR and FT‐IR. The nanoparticle size was determined to be of 9.5 nm (+2.5 nm) by Transmission Electron Microscopy (TEM) and UV spectra. Four pairs of dinitrophenyl‐labeled amino acid enantiomers (DL‐Val, Leu, Glu and Asp) and three pairs of drug enantiomers (RS‐chlorpheniramine, zopiclone and carvedilol) were analyzed by using modified GNPs as the chiral selector in PSP‐CEC. Good theoretical plate number (up to 2.4×105 per meter) and separation resolution (up to 4.7) were obtained even with low concentration of modified GNPs (0.8–1.4 mg/mL). The corresponding concentration of β‐CD in the buffer was only 0.30?0.53 mM, which was much lower than the optimum concentration of 15 mM if pure β‐CD was used as chiral selector. Our results showed that thiolated β‐CD modified GNPs have more sufficient interaction with the analytes, resulting in significant enhancement of enantioseparation. The study shed light on potential usage of chemical modified GNPs as chiral selector for enantioseparation based on PSP‐CEC.  相似文献   

4.
Herein, we report the effect of gold nanoparticles (GNPs) in enhancing lipase activity in reverse micelles of cetyltrimethylammonium bromide (CTAB)/water/isooctane/n‐hexanol. The size and concentration of the nanoparticles were varied and their specific roles were assessed in detail. An overall enhancement of activity was observed in the GNP‐doped CTAB reverse micelles. The improvement in activity becomes more prominent with increasing concentration and size of the GNPs (0–52 μM and ca. 3–30 nm, respectively). The observed highest lipase activity (k2=1070±12 cm3 g?1 s?1) in GNP‐doped CTAB reverse micelles ([GNP]: 52 μm, ca. 20 nm) is 2.5‐fold higher than in CTAB reverse micelles without GNPs. Improvement in the lipase activity is only specific to the GNP‐doped reverse micellar media, whereas GNP deactivates and structurally deforms the enzyme in aqueous media. The reason for this activation is probably due to the formation of larger‐sized reverse micelles in which the GNP acts as a polar core and the surfactants aggregate around the nanoparticle (‘GNP pool’) instead of only water. Lipase at the augmented interface of the GNP‐doped reverse micelle showed improved activity because of enhancement in both the substrate and enzyme concentrations and increased flexibility in the lipase conformation. The extent of the activation is greater in the case of the larger‐sized GNPs. A correlation has been established between the activity of lipase and its secondary structure by using circular dichroism and FTIR spectroscopic analysis. The generalized influence of GNP is verified in the reverse micelles of another surfactant, namely, cetyltripropylammonium bromide (CTPAB). TEM, dynamic light scattering (DLS), and UV/Vis spectroscopic analysis were utilized to characterize the GNPs and the organized aggregates. For the first time, CTAB‐based reverse micelles have been found to be an excellent host for lipase simply by doping with appropriately sized GNPs.  相似文献   

5.
Herein we describe a protocol that generates Au icosahedra in high yields by simply mixing aqueous solutions of HAuCl4 and N‐vinyl pyrrolidone. Our mechanistic study reveals that water plays an important role in this synthesis: as a nucleophile, it attacks the gold–vinyl complex, leading to the production of an alcohol‐based AuI intermediate. This intermediate then undergoes a redox reaction in which AuI is reduced to Au0, leading to the formation of Au atoms and then Au icosahedra of about 18 nm in size at a yield of 94 %, together with a carboxylic acid in the final product. This new protocol has also been employed to prepare multiply twinned nanoparticles of Ag (15–20 nm in size), spherical aggregates (25–30 nm in size) of Pd nanoparticles, and very small nanoparticles of Pt (2 nm in size). Since no organic solvent, surfactant, or polymer stabilizer is needed for all these syntheses, this protocol may provide a simple, versatile, and environmentally benign route to noble‐metal nanoparticles having various compositions and morphologies.  相似文献   

6.
ZHENG  Pengcheng  HU  Juan  SHEN  Guoli  JIANG  Jianhui  YU  Ruqin  LIU  Guokun 《中国化学》2009,27(11):2137-2144
By simply adding ascorbic acid in advance of AgNO3, the size and shape controllable Au/Ag bimetallic nanoparticles (NP) were prepared in the traditional Au growth solution free of seed at room temperature. The size distribution of NP is well uniform with ca. 10%–15% standard deviation in diameter. By changing CTAB concentration, the size and shape of NPs are tunable. After researching the surface‐enhanced Raman spectroscopy (SERS) behavior of the prepared NPs, an enhancement factor varied from 4.3×104 to 1.1×105 was obtained for the NP centered at ca. (64±8) nm. Electrochemical cyclic voltammetric results revealed that the so formed nanoparticles were Au riched Au/Ag bimetallic NP, and this formation might be due to the disproportionation reaction of Au+ prompted by Ag+ and the under potential deposition process of Ag+ on Au.  相似文献   

7.
Carboxylated peptide‐functionalized gold nanoparticles (peptide‐GNPs) self‐assemble into two‐ and three‐dimensional nanostructures in the presence of various heavy metal ions (i.e. Pb2+, Cd2+, Cu2+, and Zn2+) in aqueous solution. The assembly process is monitored by following the changes in the surface plasmon resonance (SPR) band of gold nanoparticles in a UV/Vis spectrophotometer, which shows the development of a new SPR band in the higher‐wavelength region. The extent of assembly is dependent on the amount of metal ions present in the medium and also the time of assembly. TEM analysis clearly shows formation of two‐ and three‐dimensional nanostructures. The assembly process is completely reversible by addition of alkaline ethylenediaminetetraacetic acid (EDTA) solution. The driving force for the assembly of peptide‐GNPs is mainly metal ion/carboxylate coordination. The color and spectral changes due to this assembly can be used for detection of these heavy‐metal ions in solution.  相似文献   

8.
Gold nanoparticles with pre-selected size in the range 5–40 nm were synthesized by γ-irradiation of Au3+ solution containing natural polysaccharide alginate as a stabilizer. The gold nanoparticles with controllable size were prepared by two approaches: (i) varying the concentration of Au3+ from 0.25 to 1 mM and alginate from 0.25% to 1% (w/v) and (ii) enlargement of seed particles with double size from 20 to 40 nm at [Au3+]/[Au0]=6. The obtained gold nanoparticles were characterized by UV–vis spectroscopy and transmission electron microscopy. The results indicated that γ-irradiation method is suitable for production of gold nanoparticles with controllable size and high purity.  相似文献   

9.
Heavy metals (HMs), pollution of major environmental matrices and its attendant effects on human health and the environment, continue to generate huge scientific interest, particularly in monitoring and detection. Herein, the optical property of carboxymethyl cellulose stabilized silver nanoparticles (CMC-AgNPs), supported with ascorbic acid, is exploited as a colorimetric probe for the detection of toxic Au3+ ion in solution. The as-synthesized CMC-AgNPs showed sharp absorption maximum at 403 nm, with sparkling yellow color and average particles size distribution less than 10 nm. It was further characterized using ATR-FTIR, TEM, FESEM/EDS, XRD and DLS/zeta potential analyzer. Au3+ ion detection strategy involves the addition of ascorbic acid (AA) to a pH adjusted CMC-AgNPs, followed by the analyte addition. AA would facilitate the reduction of Au3+ on CMC-AgNPs (seed), with resultant color perturbations from light yellow to yellow, orange, ruby red and purple red, under 8 min incubation, at room temperature (RT). The CMC-AgNPs could also serve as a catalyst, by promoting AA mediated reduction of Au3+, in-situ. Moreover, we propose, that the color and the absorption spectra change is attributed to the deposition of gold nanoparticles (AuNPs), on the CMC-AgNPs/AA probe, to form (CMC-Ag@Au) nanostructures, depending on the analyte concentration. Absorbance ratio (A540/A403) showed good linearity with Au3+ concentration from 0.25 to 100.0 µM, and an estimated LOD of 0.061 µM. The assay was applied to Au3+ detection in environmental wastewater sample, showing satisfactory real sample detection potentiality.  相似文献   

10.
Chitosan (CS) was chosen for dispersing multi‐wall carbon nanotubes (MWNTs) to form a stable CS‐MWNTs composite, which was first coated on the surface of a glassy carbon electrode to provide a containing amino groups interface for assembling colloidal gold nanoparticles (GNPs), followed by the adsorption of hemoglobin (Hb). Repeating the assembly step of GNPs and Hb resulted in {Hb/GNPs}n multilayers. The assembly of GNPs onto CS‐MWNTs composites was confirmed by transmission electron microscopy. The consecutive growth of {Hb/GNPs}n multilayers was confirmed by cyclic voltammetry and UV‐vis absorption spectroscopy. The resulting system brings a new platform for electrochemical devices by using the synergistic action of the electrocatalytic activity of GNPs and MWNTs. The resulting biosensor displays an excellent electrocatalytic activity and rapid response for hydrogen peroxide. The linear range for the determination of H2O2 was from 5.0×10?7 to 2.0×10?3 M with a detection limit of 2.1×10?7 M at 3σ and a Michaelis–Menten constant KMapp value of 0.19 mM.  相似文献   

11.
Gold being the most biocompatible metal nanoparticle has become an important biosynthesized drug to be studied in recent field of bioscience. The fungus Aspergillus fischeri has been isolated from fruit crop and thus exploited for the synthesis process. Synthesized GNPs were characterized by UV–visible spectroscopy showed absorption spectra in the range of 530–550 nm at different concentrations of HAuCl4. At the optimum reaction concentration of 1 mM HAuCl4, absorption peak was obtained at 543 nm. The GNPs have been further characterized by X-ray diffraction, FTIR, DLS and TEM analysis. The DLS graph showed that the particles were monodispersed. The TEM image showed the formation of spherical shaped GNPs in the range of 50 nm which was in accordance of the particle size analysis by DLS. The potential applications of the gold nanoparticles are yet to be explored and thus, we have conducted a time dependent comparative catalytic activity for methylene blue degradation of chemically synthesized and biosynthesized GNPs which showed biosynthesized ones are better catalysts than chemical ones.  相似文献   

12.
A number of adamantane‐containing ruthenium(II) and rhenium(I) complexes have been synthesized, characterized, and noncovalently functionalized with β‐cyclodextrin‐capped gold nanoparticles (β‐CD–GNPs) through the host–guest interaction between cyclodextrin and adamantane. The resultant nanoconjugates have been characterized by transmission electron microscopy (TEM), energy‐dispersive X‐ray analysis (EDX), and 2D ROESY 1H NMR experiments. The Förster resonance energy transfer (FRET) properties of the nanoconjugates can be modulated by both esterase‐accelerated hydrolysis and competitive displacement of steroid, by monitoring the emission intensity and luminescence lifetime. The FRET efficiencies are found to vary with the nature of the chromophores and the length of the spacer between the transition metal complexes and the GNPs. This work constitutes a “proof‐of‐principle” assay method for the dual‐functional detection of important classes of biomolecules, such as enzymes and steroids.  相似文献   

13.
Summary: Biodegradable amphiphilic poly(ether-anhydride) gel nanoparticles (GNPs) with a hydrophobic crosslinked core and a hydrophilic PEG shell have been prepared from amphiphilic photo-crosslinkable ether-anhydride macromers via microemulsion photo-polymerization. The properties of the GNPs, such as degradability, size and drug-loading capacity, were investigated by tailoring the length of PEG chains in macromers from 400 to 4000 and by the addition of a hydrophobic photo-crosslinkable monomer: stearic monoacrylic anhydride (MSA). TEM showed that the GNPs were spherical in shape with a core-shell structure when MSA was added. The GNPs were used as the carriers to enhance the solubility of hydrophobic drugs. Indomethacin (IND) as a model drug was entrapped in the hydrophobic crosslinked core by an in situ embedding method. Results showed that IND maintained chemically intact during the formulation process, and its dissolution rate were improved compared to those of the pure IND. The GNPs prepared from PEG macromer (molecular weight: 4000) with the addition of MSA exhibited the zero-order release behavior, which is potentially useful to control the release of hydrophobic drugs.  相似文献   

14.
Gold nanoparticles are known to be highly versatile oxidation catalysts utilizing molecular oxygen as a feedstock, but the mechanism and species responsible for activating oxygen remain unclear. The reaction between unsupported cationic gold clusters and molecular oxygen has been investigated. The resulting complexes were characterized in the gas phase using IR spectroscopy. A strong red‐shift in the observed ν(O‐O) stretching frequency indicates the formation of superoxo (O2?) moieties. These moieties are seen to form spontaneously in systems, which upon electron transfer attain a closed shell within the spherical jellium model (Au10+ and Au22+), whereas an oxygen induced self‐promotion in the activation is observed for other systems (Au4+, Au12+, Au21+).  相似文献   

15.
Supported nickel nanoparticles with high dispersion have been prepared by partial reduction of NiAl‐layered double hydroxide (NiAl‐LDH) precursors, which exhibit significant electrocatalytic behavior towards glucose. XRD and XPS results confirm that the nickel nanoparticles are successfully synthesized. TEM images reveal that the nickel nanoparticles are highly dispersed in the NiAl‐LDH matrix with a size of 6±0.3 nm. The resulting nanocomposite modified electrode displays significant electrocatalytic performance to glucose with a broad linear response range (8.0×10?5–2.0×10?3 M), low detection limit (3.6 µM), high sensitivity (339.2 µA/mM), selectivity and excellent reproducibility as well as repeatability.  相似文献   

16.
We describe a shape‐controlled synthesis of polyelectrolyte‐functionalized flowerlike and polyhedral Au nanoparticles and the development of a nanoarchitectured platform for the selective and highly sensitive detection of protamine and heparin by voltammetric, impedimetric, and microgravimetric techniques. The functionalized Au nanoparticles were chemically synthesized in aqueous solution at room temperature in the presence of the polyelectrolyte (either protamine or heparin). The charge on the polyelectrolyte controlled the shape and surface morphology of the nanoparticles. The negatively charged heparin‐functionalized Au nanoparticles have multiple branched flowerlike shapes with an average size of 50 nm, whereas the cationic protamine‐functionalized nanoparticles are of polyhedral shape with an average size of 25 nm. Both flowerlike and polyhedral nanoparticles have (111), (200), (220), and (311) planes of a face‐centered cubic lattice of Au. Voltammetric, impedimetric, and microgravimetric sensing platforms based on functionalized Au nanoparticles have been developed for the sensing of heparin and protamine. The sensing platforms are developed by self‐assembling the functionalized nanoparticles on a thiol‐functionalized three‐dimensional silicate network. The microgravimetric sensing platform shows very high sensitivity and it can detect heparin and protamine at concentrations as low as 0.05 μg mL?1. The selectivity of the sensing platform towards heparin was examined with potential interferents such as hyaluronic acid (HA) and chondroitin‐4‐sulfate (CS). Both HA and CS did not interfere with the measurement of heparin. The practical application of the sensing platform was demonstrated by measuring the concentration of heparin and protamine in human serum samples. The sensing platform could successfully quantify the concentration of heparin and protamine in the real serum samples with excellent recovery. The sensing platform was robust and could be used for repeated measurement without compromising the sensitivity.  相似文献   

17.
In the present study, ZnO nanoparticle preparation in a water‐base medium without using toxic chemicals was investigated. Zinc (II) acetate dehydrate, L? leucine and 5? sulfosalicylaldehyde sodium salt were utilized as the starting materials. X? ray diffraction analyses proved that ZnO was achieved as a unique phase. The highest value of crystallinity was obtained at 600 °C and the minimum values of crystallite size and lattice strain were reported at 400 and 500 °C, respectively. The photoluminescence spectroscopy showed that firing at 500 °C leads to decrease the point defects in ZnO structure. SEM and TEM images confirmed the relation between the firing temperature, the degree of crystallinity and the crystallite size. Firing at 400 °C leads to form ZnO nanoparticles with a size distribution ranging from 15 to 50 nm with cubic, circle and hexagonal shapes. By increasing the temperature to 500 °C, the nanoparticles dimensions increase to 30–60 nm. The particle size of sample ‘c’ is more than 50 nm. The optimum temperature to achieve the goal of this research, namely a high crystallinity and low structure defects, was found to be 500 °C.  相似文献   

18.
《Electroanalysis》2006,18(18):1763-1770
Poly(L ‐lactide) stabilized gold nanoparticles (designated as PLA–AuNP) with an average particle size of ca. 10 nm were used to modify a disposable screen‐printed carbon electrode (SPE) for the detection of As(III) by differential pulse anodic stripping voltammetry. Gold modification was evaluated by cyclic voltammetry, whereas scanning electron microscopy and transmission electron microscopy revealed the size and distribution of gold nanoparticles. The PLA–AuNP/SPE was applied effectively to detect toxic As(III) in HCl medium. Under the optimal experimental conditions, a linear calibration curve up to 4 ppm with a detection limit (S/N=3) of 0.09 ppb was obtained. The sensitivity was good enough to detect As(III) at levels lower than the current EPA standard (10 ppb). Most importantly, the PLA–AuNP/SPE can be tolerable from the interference of Cu, Cd, Fe, Zn, Mn, and Ni and hence provides a direct and selective detection method for As(III) in natural waters. Practical utility of the PLA–AuNP/SPE was demonstrated to detect As(III) in “Blackfoot” disease endemic village groundwater from southwestern coast area of Taiwan (Pei‐Men).  相似文献   

19.
We present herein a simple method for enhancing the emission of DNA intercalators in homogeneous nanobiohybrids of unlabeled oligonucleotides and unmodified gold nanoparticles (GNPs). Pristine single‐stranded DNA (ss‐DNA) has been wrapped around unmodified GNPs to induce metal‐enhanced fluorescence (MEF) of DNA intercalators, such as ethidium bromide and propidium iodide. The thickness of the ss‐DNA layer on the gold nanosurface determines the extent of MEF, since this depends on the position of the intercalator in relation to the metal surface. Presumably, at a suitable thickness of this DNA layer, more of the intercalator is localized at the optimum distance from the nanoparticle to give rise to MEF. Importantly, no external spacer or coating agent was needed to induce the MEF effect of the GNPs. The concentration ratios of Au to DNA in the nanohybrids, as well as the capping agents applied to the GNPs, play key roles in enhancing the emission of the intercalators. The dimensions of both components of the nanobiohybrids, that is, the size of the GNPs and the length of the oligonucleotide, have considerable influences on the emission enhancement of the intercalators. Emission intensity increased with increasing size of the GNPs and length of the oligonucleotide only when the DNA efficiently wrapped the nanoparticles. An almost 100 % increment in the quantum yield of ethidium bromide was achieved with the GNP–DNA nanobiohybrid compared with that with DNA alone (in the absence of GNP), and the fluorescence emission was enhanced by 50 % even at an oligonucleotide concentration of 2 nM . The plasmonic effect of the GNPs in the emission enhancement was also established by the use of similar nanobioconjugates of ss‐DNA with nonmetallic carbon nanoparticles and TiO2 nanoparticles, with which no increase in the fluorescence emission of ethidium bromide was observed.  相似文献   

20.
The effect of the pH of the growth solution on the size and crystallographic orientation of gold nanoparticles (GNPs) was studied during the course of the preparation of surface-confined spherical GNPs following a two-step protocol (electrochemical and chemical). GNPs were first electrodeposited onto a clean glassy carbon (GC) electrode and these GNPs were used as seeds. Seed-mediated growth of the electrodeposited GNPs was performed in a solution of H[AuCl(4)] at various pHs (5.0 to 0.5) using NH(2)OH as a reducing agent. The thus-prepared GNPs were characterized by electrochemical, UV-visible absorption spectral, SEM, and TEM studies. The nucleation (i.e., formation of the new seeds) was found to dominate over growth (i.e., enlargement of the seed particles) process at higher pH during NH(2)OH seeding, whereas only growth was recognized at low pH (0.5). Nonspherical byproducts were noticed when the seed-mediated growth was performed at higher pHs, but at pH 0.5 only spherical GNPs were observed. The present method provides a way out for the preparation of GNPs with homogeneous shape resolving the problem of simultaneous formation of nonspherical byproducts during the seed-mediated growth as well as for the preparation of GNPs with a Au(111) facet ratio as high as 97%. On the basis of the obtained results, the mechanism of the growth process at low pH is also discussed. Interestingly, an enhanced electrochemical response was obtained for the oxidation of H(2)O(2) using the GNPs prepared at pH 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号