首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2916篇
  免费   330篇
  国内免费   217篇
化学   2211篇
晶体学   33篇
力学   132篇
综合类   9篇
数学   288篇
物理学   790篇
  2024年   11篇
  2023年   103篇
  2022年   129篇
  2021年   143篇
  2020年   178篇
  2019年   197篇
  2018年   179篇
  2017年   126篇
  2016年   201篇
  2015年   176篇
  2014年   206篇
  2013年   268篇
  2012年   297篇
  2011年   298篇
  2010年   191篇
  2009年   152篇
  2008年   172篇
  2007年   120篇
  2006年   84篇
  2005年   46篇
  2004年   27篇
  2003年   17篇
  2002年   20篇
  2001年   16篇
  2000年   15篇
  1999年   6篇
  1998年   17篇
  1997年   17篇
  1996年   19篇
  1995年   8篇
  1994年   6篇
  1993年   4篇
  1991年   2篇
  1990年   7篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
排序方式: 共有3463条查询结果,搜索用时 31 毫秒
31.
A room-temperature ionic liquid (IL), 1-ethyl-3-methyl-imidazolium tetrafluoroborate (1E-3MI-TFB), used for the coating of a silica capillary enables one to reduce or invert the electroosmotic flow (EOF) in capillary zone electrophoresis. Excellent separations of amino acids and ary lalkanoic acids were obtained. Such separations could not be obtained in a naked capillary in the presence of the cationic surfactants cetyltrimethylammonium bromide (CTAB) or polycationic polymer hexadimethrine bromide (HDB). The results indicate that 1E-3MI-TFB not only modulates the EOF but also acts as a discriminator. Further experiments indicate that the interaction between hydrogen at C-2 carbon of IL and acid drugs plays an important role in the separation. The text was submitted by the authors in English.  相似文献   
32.
A novel polyimide (PI) based on 2,6-bis(p-aminophenyl)-benzo[1,2-d;5,4-d′]bisoxazole has been synthesized via a conventional two-stage procedure with bis(ether anhydrides) (HQDPA). The intermediate poly(amic acid) had inherent viscosities of 1.70 dl/g and could be thermally converted into light yellow polyimide film. The resulted polyimide showed excellent thermal stability, and the glass transition temperatures (Tg) were above 283 °C, the 5% weight loss temperature of the polymer was at 572 °C in N2. The thermal degradation of the polyimide was studied by thermogravimetric analysis (TGA) in order to determine the actual reaction mechanisms of the decomposition process. The activation energy of the solid-state process was determined using Flynn-Wall-Ozawa method, which does not require knowledge of the reaction mechanism, which resulted to be 361.36 kJ/mol. The activation energy of different mechanism models and pre-exponential factor (A) were determined by Coats-Redfern method. Compared with the value obtained from the Ozawa method, the actual reaction mechanism obeyed nucleation and growth model, Avrami-Erofeev function (A3) with integral form g(X) = [−ln(1−X)]3.  相似文献   
33.
The metal complexes [Hg2(tbim)2Br4]·2DMF ( 1 ) and [Hg2(tbim)I4]·1.5DMF ( 2 ) were prepared by reactions of 1,3,5‐tris(benzimidazol‐1‐ylmethyl)‐2,4,6‐trimethylbenzene (tbim) with HgBr2, HgI2, respectively, and [Hg2(tbim)I4]·0.5(FeCp2)·H2O ( 3 ) was obtained by the same method with addition of ferrocene (FeCp2) as additive. Their structures were determined by X‐ray crystallographic analyses. Complex 1 has a macrocyclic binuclear structure with one benzimidazole arm of the ligand free of coordination and the binuclear units are further connected by C‐H···N hydrogen bonds to give an infinite zigzag chain. Complexes 2 and 3 have a 2D network structure in which tbim serves as a tridentate ligand. The results showed that the halides of bromide and iodide have remarkable impact on the structure of the complexes. The FeCp2 molecules are trapped in the voids of framework 3 .  相似文献   
34.
In the present study, the competitive adsorption characteristics of binary and ternary heavy metal ions Pb2+, Cu2+, and Cd2+ on microporous titanosilicate ETS-10 were investigated in batch systems. Pure microporous titanosilicate ETS-10 was synthesized with P25 as the Ti source and characterized by the techniques of X-ray diffraction (XRD), field emission-scanning electron microscope (FESEM), nitrogen adsorption, and zeta-potential. Equilibrium and kinetic adsorption data showed that ETS-10 displays a high selectivity toward one metal in a two-component or a three-component system with an affinity order of Pb2+ > Cd2+ > Cu2+. The equilibrium behaviors of heavy metals species with stronger affinity toward ETS-10 can be described by the Langmuir equation while the adsorption kinetics of the metals can be well fitted to a pseudo-second-order (PSO) model.  相似文献   
35.
With the rapid development of human society, clean energy forms are imperative to sustain the normal operations of various mechanical and electrical facilities under a cozy environment. Hydrogen is considered among the most promising clean energy sources for the future. Recently, electrochemical water splitting has been considered as one of the most efficient approaches to harvest hydrogen energy, which generates only non-pollutant water on combustion. However, the sluggish anodic oxygen evolution reaction significantly restricts the efficiency of water splitting and requires a relatively high cell voltage to drive the electrolysis. Therefore, seeking a thermodynamically favorable anodic reaction to replace the sluggish oxygen evolution reaction by utilizing highly active bifunctional electrocatalysts for the anodic reaction and hydrogen evolution are crucial for achieving energy-efficient hydrogen production for industrial applications. Nevertheless, it is known that the oxygen evolution reaction can be replaced with other useful and thermodynamically favorable reactions to reduce the electrolysis voltage for realizing energy-efficient hydrogen production. Therefore, in this study, we present a bifunctional nickel nanoparticle-embedded carbon (Ni@C) prism-like microrod electrocatalyst synthesized via a two-step method involving the synthesis of a precursor metal-organic framework-74 and subsequent carbonization treatment for methanol oxidation and hydrogen evolution. The interfacial structure consisting of a nickel and carbon skeleton was realized via in situ carbonization. However, the dispersed nickel nanoparticles do not easily aggregate owing to the partition by the surrounding carbon as it would sufficiently expose the active Ni sites to the electrolytes, ensuring fast charge transfer between the catalyst and electrolytes by accelerating the electrochemical kinetics. In the anodic methanol oxidation, the products were detected as carbon dioxide and formate with faradaic efficiencies of 36.2% and 62.5%, respectively, at an applied potential of 1.55 V. Meanwhile, the Ni@C microrod catalyst demonstrated high activity and durability (2.7% current decay after 12 h of continuous operation) toward methanol oxidation, which demonstrates that methanol oxidation precedes oxidation under voltage forces. Notably, the bifunctional catalyst not only exhibits excellent performance toward methanol oxidation but also yields a low overpotential of 155 mV to drive 10 mA∙cm−2 toward hydrogen evolution in 1.0 mol∙L−1 KOH aqueous solution with 0.5 mol∙L−1 methanol at room temperature, which guarantees the hydrogen production efficiency. More importantly, the constructed two-electrode electrolyzer produced a current density of 10 mA∙cm−2 at a low cell voltage of 1.6 V, which decreased by 240 mV after replacing the oxygen evolution reaction with methanol oxidation.  相似文献   
36.
Wang Z  Zhang Z  Fu Z  Luo W  Zhang X 《Talanta》2004,62(3):611-617
A novel and sensitive chemiluminescence (CL) method for the determination of aminomethylbenzoic acid and aminophylline coupled with flow-injection analysis (FIA) technique is developed in this paper. It is based on the inhibition effect of the studied drugs on the chemiluminescence emission of N-bromosuccinimide-luminol (NBS-luminol) system. Under the optimum conditions, the decreased CL intensity is linear with the concentration of aminomethylbenzoic acid in the range of 2×10−8 to 1.0×10−6 g ml−1 and with the concentration of aminophylline in the range of 1×10−7 to 7.0×10−6 g ml−1, respectively. The detection limit is 7.0×10−9 g ml−1 for aminomethylbenzoic acid (3σ) and 3.4×10−8 g ml−1 for aminophylline (3σ). The relative standard deviations (R.S.D.) for 11 parallel measurements of 2.0×10−7 g ml−1 aminomethylbenzoic acid and 1.0×10−6 g ml−1 aminophylline are 2.6 and 3.0%, respectively. The proposed methods have been applied for the determination of the studied drugs in their pharmaceutical formulations with satisfactory results. The possible use of the proposed system for the determination of aminomethylbenzoic acid in plasma sample was also tested. The possible inhibition mechanism of aminomethylbenzoic acid and aminophylline on luminol-NBS system was discussed briefly.  相似文献   
37.
Designing a donor–acceptor (D–A) molecule with a hybridized local and charge transfer (HLCT) excited state is a very effective strategy for producing an organic light-emitting diode (OLED) with a high exciton utilization efficiency and external quantum efficiency. Herein, a novel twisting D–π–A fluorescent molecule (triphenylamine–anthracene–phenanthroimidazole; TPAAnPI) is designed and synthesized. The excited state properties of the TPAAnPI investigated through photophysical experiments and density functional theory (DFT) analysis reveal that its fluorescence is due to the HLCT excited state. The optimized non-doped blue OLED using TPAAnPI as a light-emitting layer exhibits a novel blue emission with an electroluminescence (EL) peak at 470 nm, corresponding to the Commission International de L''Eclairage (CIE) coordinates of (0.15, 0.22). A fabricated device termed Device II exhibits a maximum current efficiency of 18.09 cd A−1, power efficiency of 12.35 lm W−1, luminescence of ≈29 900 cd cm−2, and external quantum efficiency (EQE) of 11.47%, corresponding to a high exciton utilization efficiency of 91%. Its EQE remains as high as 9.70% at a luminescence of 1000 cd m−2 with a low efficiency roll-off of 15%. These results are among the best for HLCT blue-emitting materials involved in non-doped blue fluorescent OLEDs. The performance of Device II highlights a great industrial application potential for the TPAAnPI molecule.

A new pure fluorescent blue HLCT-emitter was designed and synthesized. Highly efficient non-doped blue OLEDs with low efficiency roll-off were achieved.  相似文献   
38.
The synthesis of amphiphilic aggregation-induced emission(AIE) dyes based organic nanoparticles has recently attracted increasing attention in the biomedical fields. These AIE dyes based nanoparticles could effectively overcome the aggregation caused quenching effect of conventional organic dyes, making them promising candidates for fabrication of ultrabright organic luminescent nanomaterials. In this work, AIE-active luminescent polymeric nanoparticles(4-NH_2-PEG-TPE-E LPNs) were facilely fabricated through Michael addition reaction between tetraphenylethene acrylate(TPE-E) and 4-arm-poly(ethylene glycol)-amine(4-NH_2-PEG) in rather mild ambient. The 4-NH_2-PEG can not only endow these AIE-active LPNs good water dispersibility, but also provide functional groups for further conjugation reaction. The size, morphology and luminescent properties of 4-NH_2-PEG-TPE-E LPNs were characterized by a series of techniques in detail. Results suggested that these AIE-active LPNs showed spherical morphology with diameter about 100–200 nm. The obtained 4-NH_2-PEG-TPE-E LPNs display high water dispersibility and strong fluorescence intensity because of their self assembly and AIE properties of TPE-E.Biological evaluation results demonstrated that 4-NH_2-PEG-TPE-E LPNs showed negative toxicity toward cancer cells and good fluorescent imaging performance. All of these features make 4-NH_2-PEG-TPE-E LPNs promising candidates for biological imaging and therapeutic applications.  相似文献   
39.
We report a facile synthesis of Au tetrahedra in high purity and with tunable, well‐controlled sizes via seed‐mediated growth. The success of this synthesis relies on the use of single‐crystal, spherical Au nanocrystals as the seeds and manipulation of the reaction kinetics to induce an unsymmetrical growth pattern for the seeds. In particular, the dropwise addition of a precursor solution with a syringe pump, assisted by cetyltrimethylammonium chloride and bromide at appropriate concentrations, was found to be critical to the formation of Au tetrahedra in high purity. Their sizes could be readily tuned in the range of 30–60 nm by simply varying the amount of precursor added to the reaction solution. The current strategy not only enables the synthesis of Au tetrahedra with tunable and controlled sizes but also provides a facile and versatile approach to reducing the symmetry of nanocrystals made of a face‐centered cubic lattice.  相似文献   
40.
A simple, novel, specific, rapid and reproducible ultra‐performance liquid chromatography electrospray ionization tandem mass spectrometry method has been developed and validated for the determination of hydroxysafflor yellow A (HSYA) in biological fluids (plasma, urine and cerebrospinal fluid) of patients with traumatic brain injury after intravenous injection of Xuebijing (XBJ). Liquid–liquid extraction was performed, and separation was carried out on an Acquity UPLC? BEH C18 column, with gradient elution using a mobile phase composed of methanol and 0.1% formic acid at a flow rate of 0.3 mL/min. A triple quadrupole tandem mass spectrometer with electrospray ionization was used for the detection of HSYA. The mass transition followed was m/z 611.0 → 491. The retention time was less than 3.0 min. The calibration curve was linear in the concentration range from 2 to 6125 ng/mL for cerebrospinal fluid, plasma and urine. The intra‐ and inter‐day precisions were <10%, and the relative standard deviation of recovery was <15% for HSYA in biological matrices. The method was successfully applied for the first time to quantify HSYA in the biological fluids (especially in cerebrospinal fluid) of patients with traumatic brain injury following intravenous administration of XBJ. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号