首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   25篇
  国内免费   22篇
化学   308篇
晶体学   4篇
力学   53篇
数学   123篇
物理学   164篇
  2023年   4篇
  2022年   3篇
  2021年   26篇
  2020年   15篇
  2019年   28篇
  2018年   23篇
  2017年   27篇
  2016年   38篇
  2015年   17篇
  2014年   25篇
  2013年   49篇
  2012年   48篇
  2011年   40篇
  2010年   27篇
  2009年   33篇
  2008年   20篇
  2007年   26篇
  2006年   9篇
  2005年   13篇
  2004年   12篇
  2003年   14篇
  2002年   20篇
  2001年   15篇
  2000年   16篇
  1999年   8篇
  1998年   6篇
  1997年   6篇
  1996年   7篇
  1994年   6篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   6篇
  1987年   2篇
  1986年   5篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   4篇
  1967年   1篇
  1936年   1篇
排序方式: 共有652条查询结果,搜索用时 31 毫秒
91.
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic‐ to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow‐assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m?3) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high‐performance materials with absolute structural control.  相似文献   
92.
Molecular Diversity - 2-Amino-3-cyano-4H-chromenes are structural core motifs that received increasing attention in the last years due to their interesting potential pharmacological properties. In...  相似文献   
93.
The current paper presents a thorough study on the pull-in instability of nanoelectromechanical rectangular plates under intermolecular, hydrostatic, and thermal actuations. Based on the Kirchhoff theory along with Eringen's nonlocal elasticity theory, a nonclassical model is developed. Using the Galerkin method(GM), the governing equation which is a nonlinear partial differential equation(NLPDE) of the fourth order is converted to a nonlinear ordinary differential equation(NLODE) in the time domain. Then, the reduced NLODE is solved analytically by means of the homotopy analysis method. At the end, the effects of model parameters as well as the nonlocal parameter on the deflection, nonlinear frequency, and dynamic pull-in voltage are explored.  相似文献   
94.
95.
Nowadays, the eye-catching characteristics of boron nitride nanotubes, in particular, the capability of sensing nano-objects, have opened up new prospects to develop the bio-/nano-sensing technologies. This research deals with physically affected single-walled boron nitride nanotubes (SWBNNT) as nano-sensors for sensing attached nanoscale objects. Three different boundary conditions including simply supported at both ends, clamped-free and clamped-clamped are considered to illustrate the vibrational behaviour of SWBNNTs as nano-sensor. The Rayleigh and Timoshenko beam theories are employed to model the SWBNNT. Also, the nonlocal strain gradient model is utilized to capture the size-dependent effects. One of the major factors in the scrutiny of mass nano-sensors is pertinent to the variation in frequency shift magnitudes against the number and mass weight values of attached nanoparticles. Herein, the effects of the nonlocal and material length scale parameters, the number and location of nano-objects, the rotary inertia and mass weight magnitudes of attached nanoparticles, the aspect ratio of SWBNNT, electrical potential and different boundary conditions on the variation in frequency shift and resonant frequency are analysed.  相似文献   
96.
97.
In this article, a highly sensitive electrochemical sensor is introduced for direct electro-oxidation of bisphenol A (BPA). The novel nanocomposite was prepared based on multi-walled carbon nanotube/thiol functionalised magnetic nanoparticles (Fe3O4-SH) as an immobilisation platform and gold nanoparticles (AuNPs) as an amplifying electrochemical signal. The chemisorbed AuNPs exhibited excellent electrochemical activity for the detection of BPA. Some analysing techniques such as Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy and energy-dispersive x-ray diffraction exposed the formation of nanocomposite. Under optimum conditions (pH 9), the sensor showed a linear range between 0.002–240 μM, with high sensitivity (0.25 μA μM?1) along with low detection limit (6.73 × 10?10 M). Moreover, nanocomposites could efficiently decrease the effect of interfering agents and remarkably enhance the utility of sensor at detection of BPA in some real samples.  相似文献   
98.
Kosugi-Migita-Stille cross coupling reactions of (ethenyl)tributyltin with all isomeric permutations of bromophenyl triflate and bromo-nitrophenyl triflate were examined in order to determine the chemoselectivity of carbon-bromine versus carbon-triflate bond coupling under different reaction conditions. In general, highly selective carbon-bromine bond cross couplings were observed using for example bis(triphenylphosphine)palladium dichloride (2?mol-%) in 1,4-dioxane at reflux. In contrast, reactions using the same pre-catalyst but in the presence of a three-fold excess of lithium chloride in N,N-dimethylformamide at ambient temperature were in most cases selective for coupling at the carbon-triflate bond. Overall, isolated yields and the selectivity for carbon-bromine bond coupling were significantly higher compared to carbon-triflate bond coupling.  相似文献   
99.
To elucidate the nature of the transition-state ensemble along the reaction pathway from a nonspecific protein-DNA complex to the specific complex, we have carried out measurements of DNA bending/unbending dynamics on a cognate DNA substrate in complex with integration host factor (IHF), an architectural protein from E. coli that bends its cognate site by approximately 180 degrees . We use a laser temperature jump to perturb the IHF-DNA complex and monitor the relaxation kinetics with time-resolved FRET measurements on DNA substrates end-labeled with a FRET pair. Previously, we showed that spontaneous bending/kinking of DNA, from thermal disruption of base-pairing/-stacking interactions, may be the rate-limiting step in the formation of the specific complex (Kuznetsov, S. V.; Sugimura, S.; Vivas, P.; Crothers, D. M.; Ansari, A. Proc. Natl. Acad. Sci. USA 2006, 103, 18515). Here, we probe the effect of varying [KCl], which affects the stability of the complex, on this rate-limiting step. We find that below approximately 250 mM KCl, the observed relaxation kinetics are from the unimolecular bending/unbending of DNA, and the relaxation rate kr is independent of [KCl]. Above approximately 300 mM KCl, dissociation of the IHF-DNA complex becomes significant, and the observed relaxation process includes contributions from the association/dissociation step, with kr decreasing with increasing [KCl]. The DNA bending step occurs with a positive activation enthalpy, despite the large negative enthalpy change reported for the specific IHF-DNA complex (Holbrook, J. A.; Tsodikov, O. V.; Saecker, R. M.; Record, M. T., Jr. J. Mol. Biol. 2001, 310, 379). Our conclusion from these studies is that in the uphill climb to the transition state, the DNA is kinked, but with no release of ions, as indicated by the salt-independent behavior of k(r) at low [KCl]. Any release of ions in the unimolecular process, together with conformational changes in the protein-DNA complex that facilitate favorable interactions and that contribute to the negative enthalpy change, must occur as the system leaves the transition state, downhill to the final complex.  相似文献   
100.
The rabbit immunoglobulin antibodies (IgGs) have been immobilized onto nanobiocomposite film of chitosan (CH)–iron oxide (Fe3O4) nanoparticles prepared onto indium–tin oxide (ITO) electrode for detection of ochratoxin-A (OTA). Excellent film forming ability and availability of –NH2 group in CH and affinity of surface charged Fe3O4 nanoparticles for oxygen support the immobilization of IgGs. Differential pulse voltammettry (DPV) studies indicate that Fe3O4 nanoparticles provide increased electroactive surface area for loading of IgGs and improved electron transport between IgGs and electrode. IgGs/CH–Fe3O4 nanobiocomposite/ITO immunoelectrode exhibits improved characteristics such as low detection limit (0.5 ng dL−1), fast response time (18 s) and high sensitivity (36 μA/ng dL−1 cm−2) with respect to IgGs/CH/ITO immunoelectrode.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号