首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
化学   3篇
  2019年   2篇
  2017年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic‐ to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow‐assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m?3) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high‐performance materials with absolute structural control.  相似文献   
2.
Designing engineering materials with high stiffness and high toughness is challenging as stiff materials tend to be brittle. Many biological materials realize this objective through multiscale (i.e., atomic‐ to macroscale) mechanisms that are extremely difficult to replicate in synthetic materials. Inspired from the architecture of such biological structures, we here present flow‐assisted organization and assembly of renewable native cellulose nanofibrils (CNFs), which yields highly anisotropic biofibers characterized by a unique combination of high strength (1010 MPa), high toughness (62 MJ m?3) and high stiffness (57 GPa). We observed that properties of the fibers are primarily governed by specific ion characteristics such as hydration enthalpy and polarizability. A fundamental facet of this study is thus to elucidate the role of specific anion binding following the Hofmeister series on the mechanical properties of wet fibrillar networks, and link this to the differences in properties of dry nanostructured fibers. This knowledge is useful for rational design of nanomaterials and is critical for validation of specific ion effect theories. The bioinspired assembly demonstrated here is relevant example for designing high‐performance materials with absolute structural control.  相似文献   
3.
We have investigated the steady-shear and viscoelastic properties of composite dispersions of cellulose nanofibrils (CNFs) with medium or high charge density and two different nanoclays, viz. rod-like sepiolite or plate-like bentonite. Aqueous dispersions of CNFs with medium charge density displayed significantly lower steady-state viscosity and storage modulus but higher gelation threshold compared with CNFs with high charge density. Dynamic light scattering (DLS) results showed that the apparent hydrodynamic radius of bentonite particles increased when CNFs were added, implying that CNFs adsorbed onto the amphoteric edges of the plate-like bentonite particles. The sepiolite network in CNF–sepiolite dispersions was relatively unaffected by addition of small amounts of CNFs, and DLS showed that the hydrodynamic radius of sepiolite did not change when CNFs were added. Addition of CNFs at concentrations above the gelation threshold resulted in drastic decrease of the steady-shear viscosity of the sepiolite dispersion, suggesting that the sepiolite network disintegrates and the rod-like clay particles are aligned also at low shear rate. The relative change in the rheological properties of the clay-based dispersions was always greater on addition of CNFs with high compared with medium charge density. This study provides insight into how the rheology of CNF–nanoclay dispersions depends on both the nanoclay morphology and the interactions between the nanoclay and nanocellulose particles, being of relevance to processing of nanocellulose–clay composites.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号