首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Solid-phase microextraction (SPME) is a technique for extraction of organic compounds from gaseous, aqueous, and solid matrices. SPME is rapid and simple, ideal for automation and for in situ measurements, and no harmful solvents are needed. The principle of SPME involves equilibration of the analytes between the sample matrix and an organic polymeric phase coated on a fused-silica fiber. SPME is traditionally combined with analysis by gas chromatography (GC) and this combination has proved sensitive, accurate, and precise for quantitative analysis of different classes of volatile compound. More recently SPME has been coupled with liquid chromatography to widen its range of application to non-volatile and thermally unstable compounds also. This article reviews the status of SPME coupled with liquid chromatography. It focuses on different applications of the technique, e.g. environmental samples, biological fluids, and food samples, to show that SPME-HPLC has great potential in the analysis of a wide range of compounds in different matrices.  相似文献   

2.
A thorough review of the application of solid-phase microextraction (SPME) combined with gas chromatography for the analysis of forensic specimens is presented, including experimental results for several recent applications. The SPME applications covered in this comprehensive review include ignitable liquid residues (also referred to as accelerants), explosive traces, drugs and poisons from biological specimens, and other forensic applications. Recently developed SPME methods are also presented, including the analysis of ignitable liquid residues on human skin, odor signatures, and several drug applications such as free-fraction antipsychotic drug levels, blood alcohol casework, drink-tampering analysis, and gamma-hydroxybutyrate identification without the need for derivatization. SPME is shown to be an inexpensive, rapid, and sensitive method for the analysis of a variety of forensic specimens.  相似文献   

3.
Solid-phase microextraction (SPME) is a new solventless sample preparation technique that is finding wide usage. This review provides updated information on headspace SPME with gas chromatographic separation for the extraction and measurement of volatile and semivolatile analytes in biological fluids and materials. Firstly the background to the technique is given in terms of apparatus, fibres used, extraction conditions and derivatisation procedures. Then the different matrices, urine, blood, faeces, breast milk, hair, breath and saliva are considered separately. For each, methods appropriate for the analysis of drugs and metabolites, solvents and chemicals, anaesthetics, pesticides, organometallics and endogenous compounds are reviewed and the main experimental conditions outlined with specific examples. Then finally, the future potential of SPME for the analysis of biological samples in terms of the development of new devices and fibre chemistries and its coupling with high-performance liquid chromatography is discussed.  相似文献   

4.
The analysis of samples contaminated by organic compounds is an important aspect of environmental monitoring. Because of the complex nature of these samples, isolating target organic compounds from their matrices is a major challenge. A new isolation technique, solid phase microextraction, or SPME, has recently been developed in our laboratory. This technique combines the extraction and concentration processes into one step; a fused silica fiber coated with a polymer is used to extract analytes and transfer them into a GC injector for thermal desorption and analysis. It is simple, rapid, inexpensive, completely solvent-free, and easily automated. To minimize matrix interferences in environmental samples, SPME can be used to extract analytes from the headspace above the sample. The combination of headspace sampling with SPME separates volatile and semi-volatile analytes from non-volatile compounds, thus greatly reducing the interferences from non-target compounds. This paper reports the use of headspace SPME to isolate volatile organic compounds from various matrices such as water, sand, clay, and sludge. By use of the technique, benzene, toluene, ethyl-benzene, and xylene isomers (commonly known as BTEX), and volatile chlorinated compounds can be efficiently isolated from various matrices with good precision and low limits of detection. This study has found that the sensitivity of the method can be greatly improved by the addition of salt to water samples, water to soil samples, or by heating. Headspace SPME can also be used to sample semi-volatile compounds, such as PAHs, from complex matrices.  相似文献   

5.
Solid phase microextraction (SPME) is an increasingly common method of sample isolation and enhancement. SPME is a convenient and simple sample preparation technique for chromatographic analysis and a useful alternative to liquid-liquid extraction and solid phase extraction. SPME is speed and simply method, which has been widely used in environmental analysis because it is a rather safe method when dealing with highly toxic chemicals. A combination of SPME and gas chromatography (GC) permits both the qualitative and quantitative analysis of toxic industrial compounds, pesticides and chemical warfare agents (CWAs), including their degradation products, in air, water and soil samples. This work presents a combination of SPME and GC methods with various types of detectors in the analysis of CWAs and their degradation products in air, water, soil and other matrices. The combination of SPME and GC methods allows for low detection limits depending on the analyte, matrix and detection system. Commercially available fibers have been mainly used to extract CWAs in headspace analysis. However, attempts have been made to introduce new fiber coatings that are characterized by higher selectivities towards different analytes of interest. Environmental decomposition of CWAs leads to the formation of more hydrophilic products. These compounds may be isolated from samples using SPME and analyzed using GC however, they must often be derivatized first to produce good chromatography. In these cases, one must ensure that the SPME method also meets the same needs. Otherwise, it is helpful to use derivatization methods. SPME may also be used with fieldportable mass spectrometry (MS) and GC-MS instruments for chemical defense applications, including field sampling and analysis. SPME fibers can be taken into contaminated areas to directly sample air, headspaces above solutions, soils and water.  相似文献   

6.
Solid-phase microextraction (SPME) has undergone a surge in popularity within the field of analytical chemistry in the past two decades since its introduction. Owing to its nature of extraction, SPME has become widely known as a quick and cost-effective sample preparation technique. Although SPME has demonstrated extraordinary versatility in sampling capabilities, the technique continues to experience a tremendous growth in innovation. Presently, increasing efforts have been directed towards the engineering of novel sorbent material in order to expand the applicability of SPME for a wider range of analytes and matrices. This review highlights the application of ionic liquids (ILs) and polymeric ionic liquids (PILs) as innovative sorbent materials for SPME. Characterized by their unique physico-chemical properties, these compounds can be structurally-designed to selectively extract target analytes based on unique molecular interactions. To examine the advantages of IL and PIL-based sorbent coatings in SPME, the field is reviewed by gathering available experimental data and exploring the sensitivity, linear calibration range, as well as detection limits for a variety of target analytes in the methods that have been developed.  相似文献   

7.
The primary objective of this review is to discuss recent technological developments in the field of solid-phase microextraction that have enhanced the utility of this sample preparation technique in the field of bioanalysis. These developments include introduction of various new biocompatible coating phases suitable for bioanalysis, such as commercial prototype in vivo SPME devices, as well as the development of sampling interfaces that extend the use of this methodology to small animals such as mice. These new devices permit application of in vivo SPME to a variety of analyses, including pharmacokinetics, bioaccumulation and metabolomics studies, with good temporal and spatial resolution. New calibration approaches have also been introduced to facilitate in vivo studies and provide fast and quantitative results without the need to achieve equilibrium. In combination with the drastic improvement in the analytical sensitivity of modern liquid chromatography–tandem mass spectrometry instrumentation, full potential of in vivo SPME as a sample preparation tool in life sciences can finally be explored. From the instrumentation perspective, SPME was successfully automated in 96-well format for the first time. This opens up new opportunities for high-throughput applications (>1000 samples/day) such as for the determination of unbound and total drug concentrations in complex matrices such as whole blood with no need for sample pretreatment, studies of distribution of drugs in various compartments and/or determination of plasma protein binding and other ligand–receptor binding studies, and this review will summarize the progress in this research area to date.  相似文献   

8.
Summary Solid-phase microextraction is a relatively recent extraction technique for sample preparation. It has been used successfully to analyse environmental pollutants in a variety of matrices such as soils, water and air. In this work, a simple and rapid method for the analysis of volatile organic and polar compounds from polluted groundwater samples by SPME coupled with gas chromatography (GC) is described. Different types of fibres were studied and the extraction process was optimised. The fibre that proved to be the best to analyse this kind of samples was CAR-PDMS. The method was validated by analysis of synthetic samples and comparison with headspace—GC. The optimised method was successfully applied to the analysis of ground-water samples.  相似文献   

9.
Sample preparation is important for the isolation and concentration of desired trace components from complex matrices. Sample preparation is the most labor-intensive and error-prone process in analytical methodology, and greatly influences the reliable and accurate determination of analytes. The integration of sample preparation with various analytical instruments is most conveniently achieved by using microextraction techniques and/or microdevices. Solid-phase microextraction (SPME) is both simple and effective, enabling miniaturization, automation and high-throughput performance. Moreover, SPME has reduced analysis times, as well as the costs of solvents and disposal. This review describes current developments and future trends in novel SPME techniques, including fiber SPME, in-tube SPME and related new microextraction techniques. Especially innovative SPME approaches, including multi-well high-throughput sampling, ligand-receptor binding study for pharmacokinetics, direct in vivo sampling, chip-based microfluidic system, and new sampling techniques using intelligent carbon nanotube and temperature-response polymer in pharmaceutical and biomedical analysis are focused items.  相似文献   

10.
The application of a manual operated solid-phase microextraction (SPME)-HPLC interface is discussed for the analysis of thermally labile analytes in aqueous matrices. The technique has been applied on-site at a flooded rice field to demonstrate its potential for real time extraction of the herbicide profoxydim. Thus, compounds which would otherwise easily degrade in the aqueous matrices within hours or days could be determined more accurately. The fibers were shipped back to the laboratory with express delivery where the target analyte was desorbed from the fiber and determined by HPLC-UV analysis. The SPME method was characterized by significant ruggedness where conventional techniques such as liquid-liquid extraction and solid-phase extraction require additional shipping and handling costs and time-consuming multiple sample preparation steps. In general, any delay in shipping the aqueous samples to the laboratory has the potential for sample degradation and a loss in accuracy when using non on-site extraction techniques. Fifty microm Carbowax-templated resin coatings were most suitable for coupling SPME to HPLC in order to achieve a high sensitivity for polar analytes. The SPME technique was characterized by a good sensitivity and a precision less than 10% RSD. The SPME-LC-UV method was linear over at least three orders of magnitude while achieving a limit of detection in the lower microg/l range. The on-site SPME method has shown significantly increased accuracy. Profoxydim was determined at concentrations of ca. 180 microg/l 3 h after an application on a flooded bare soil field.  相似文献   

11.
Methyl tert-butyl ether (MTBE) is commonly used as chemical additive to increase oxygen content and octane rating of reformulated gasoline. Despite its impact on enhancing cleaner combustion of gasoline, MTBE poses a threat to surface and ground water when gasoline is released into the environment. Methods for onsite analysis of MTBE in water samples are also needed. A less common technique for MTBE detection from water is ion mobility spectrometry (IMS). We describe a method for fast sampling and screening of MTBE from water by solid phase microextraction (SPME) and IMS. MTBE is adsorbed from the head space of a sample to the coating of SPME fiber. The interface containing a heated sample chamber, which couples SPME and IMS, was constructed and the SPME fiber was introduced into the sample chamber for thermal desorption and IMS detection of MTBE vapors. The demonstrated SPME-IMS method proved to be a straightforward method for the detection of trace quantities of MTBE from waters including surface and ground water. We determined the relative standard deviation of 8.3% and detection limit of 5 mg L−1 for MTBE. Because of short sampling, desorption, and detection times, the described configuration of combined SPME and IMS is a feasible method for the detection of hazardous substances from environmental matrices.  相似文献   

12.
Solid phase microextraction (SPME) has experienced rapid development and growth in number of application areas since its inception over 20 years ago. It has had a major impact on sampling and sample preparation practices in chemical analysis, bioanalysis, food and environmental sciences. A significant impact is expected in clinical analysis as well as pharmaceutical and medical sciences in the near future. In this review, recent developments of SPME and related technologies are discussed including an in-vial standard gas system for calibration of SPME in high throughput mode; a thin film geometry with high extraction efficiency SPME for gas chromatography (GC) and liquid chromatography (LC) analyses; and couplings of SPME with portable instruments permitting on-site measurements. Also, the latest advances in the preparation of sorbents applicable for direct extraction from complex biological matrices as well as applications of these extraction phases in food analysis and biomedical studies such as therapeutic drug monitoring and pharmacokinetics are described. Finally, recent trends in metabolomics analysis and examples of clinical monitoring of biomarkers with SPME are reviewed.  相似文献   

13.
Solid-phase microextraction (SPME) is an organic solvent-free sample preparation tool suitable for direct adsorption of analytes from the headspace or the aqueous phase of a matrix followed by desorption into a gas chromatograph (GC) or high-performance liquid chromatograph (HPLC) for subsequent analysis. The SPME technique is designed to accommodate the use of fibers coated with different polymers suitable for the extraction of chemicals with varied hydrophobic and polar properties. Also, the technique can minimize interference from other artefacts associated with complex samples, such as those encountered in biological matrices or reaction mixtures. The preceding characteristics of SPME make the technique suitable for real-time measurements of intermediate reaction products and, thus, able to provide insight into the fate of target chemicals and their degradation pathways. In the present article, the current state of knowledge on the use of SPME-GC and SPME-HPLC in the determination of frequently encountered environmental chemicals and their (bio)transformation pathways are critically reviewed. Future opportunities of SPME in real time in situ process monitoring such as the use of agricultural feed stocks to bio-based industrial products termed henceforth "process analytical chemistry" are also discussed.  相似文献   

14.
Solid phase microextraction (SPME), a simple, fast and promising sampling technique, has been widely used for complex sample analysis. However, complex matrices could modify the absorption property of coatings as well as the uptake kinetics of analytes, eventually biasing the quantification results. In the current study, we demonstrated the feasibility of a developed calibration method for the analysis of polycyclic aromatic hydrocarbons (PAHs) in complex milk samples. Effects of the complex matrices on the SPME sampling process and the sampling conditions were investigated. Results showed that short exposure time (pre-equilibrium SPME, PE-SPME) could increase the lifetime of coatings, and the complex matrices in milk samples could significantly influence the sampling kinetics of SPME. In addition, the optimized sampling time, temperature and dilution factor for PAHs were 10 min, 85 °C and 20, respectively. The obtained LODs and LOQs of all the PAHs were 0.1–0.8 ng/mL and 1.4–4.7 ng/mL, respectively. Furthermore, the accuracy of the proposed PE-SPME method for milk sampling was validated by the recoveries of the studied compounds in two concentration levels, which ranged from 75% to 110% for all the compounds. Finally, the proposed method was applied to the screening of PAHs in milk samples.  相似文献   

15.
Solid-phase microextraction (SPME) is a fast, solvent-free alternative to conventional sample preparation techniques. This technique involves exposing a fused silica fiber that has been coated with a stationary phase to an aqueous solution or its headspace to selectively extract compounds from their matrix. The fiber is then removed, and the analytes are thermally desorbed in the injector of a gas chromatograph. By sampling from the headspace above sample matrices, SPME can be used to extract target analytes from very complex matrices. In this study, SPME in the headspace is used in developing a method for the dye 1-methylaminoanthraquinone (MAAQ) and two lachrymators: orthochlorobenzalmalononitrile (CS) (tear gas) and 2-chloroacetophenone (CN) (tear gas). The focus is to develop a robust method to minimize sample preparation and to reduce matrix interferences encountered by other extraction techniques. In developing the method, several fibers are studied for their affinity for the compounds of interest. Although this method is developed for qualitative analysis, the extraction time and temperature profile are thoroughly investigated to provide the optimal conditions. The use of a salt solution is evaluated to increase the partitioning of MAAQ into the headspace. Using this method, qualitative extraction is achieved for the analysis of CN, CS, and MAAQ from its matrices. CN and CS are extracted in less than 5 min, though MAAQ needed more than 15 min to achieve a reasonable response. If more sensitivity is required, the use of a salt solution increases the response of MAAQ by 90-fold.  相似文献   

16.
This paper describes the use of headspace solid-phase microextraction (SPME) combined with gas chromatography to identify the signature odors that law enforcement-certified detector dogs alert to when searching for drugs, explosives, and humans. Background information is provided on the many types of detector dog available and specific samples highlighted in this paper are the drugs cocaine and 3,4-methylenedioxy-N-methylamphetamine (MDMA or Ecstasy), the explosives TNT and C4, and human remains. Studies include the analysis and identification of the headspace "fingerprint" of a variety of samples, followed by completion of double-blind dog trials of the individual components in an attempt to isolate and understand the target compounds that dogs alert to. SPME–GC/MS has been demonstrated to have a unique capability for the extraction of volatiles from the headspace of forensic specimens including drugs and explosives and shows great potential to aid in the investigation and understanding of the complicated process of canine odor detection. Major variables evaluated for the headspace SPME included fiber chemistry and a variety of sampling times ranging from several hours to several seconds and the resultant effect on ratios of isolated volatile components. For the drug odor studies, the CW/DVB and PDMS SPME fibers proved to be the optimal fiber types. For explosives, the results demonstrated that the best fibers in field and laboratory applications were PDMS and CW/DVB, respectively. Gas chromatography with electron capture detector (GC/ECD) and mass spectrometry (GC/MS) was better for analysis of nitromethane and TNT odors, and C-4 odors, respectively. Field studies with detector dogs have demonstrated possible candidates for new pseudo scents as well as the potential use of controlled permeation devices as non-hazardous training aids providing consistent permeation of target odors.  相似文献   

17.
Solid-phase microextraction (SPME) is a solvent-free sample preparation technique using a thin coating attached to the surface of a fused silica-fiber as the extraction medium, which has been successfully applied to the analysis of a wide variety of compounds by coupling to gas chromatography (GC). In recent years, in-tube SPME using GC capillary column as the extraction medium has also been developed and coupled with liquid chromatography (LC) for the preconcentration of nonvolatile compounds. In this study, an on-line interface between the fiber-in-tube SPME and capillary electrophoresis (CE) has been developed, and the preconcentration and separation of four tricyclic antidepressant (TCA) drugs, amitriptyline, imipramine, nortriptyline, and desipramine, were performed with the hyphenated system. Under the optimized condition, a better extraction performance than conventional in-tube SPME was obtained, even the length of the extraction medium was much shorter. The results clearly indicated that the fiber was working effectively as an extraction medium. For the separation of these four TCAs, capillary electrophoretic separation with beta-cyclodextrin as the buffer additive has been employed and the application of the developed system to the analysis of complex sample mixtures in a biological matrix is also demonstrated.  相似文献   

18.
Optimal conditions of headspace solid-phase microextraction followed by gas chromatography coupled to pulsed flame photometric detection (SPME–GC–PFPD) have been investigated to validate the analysis of 11 organotin compounds in plant matrices including methyl-, butyl-, and phenyltin compounds. The extraction of organotin compounds from vegetal matrices has been carried out using optimized conditions of HCl-based extraction. The use of headspace SPME to preconcentrate the analytes allowed most of the detection limits to be obtained sub-0.5?ng(Sn)?g?1. The precision evaluated using RSD with six replicates ranges between 5 and 10% (except for triphenyltin: 17%). The accuracy of the method was validated on spiked or polluted vegetal samples taken from Bizerte Lagoon (Tunisia) and by comparison with classical liquid–liquid extraction (LLE). These results highlight the suitability of the selected method for organotin control in complex environmental matrices such as aquatic plants.  相似文献   

19.
The isolation of non-volatile organic poisons from biological specimens is often difficult and time consuming. This paper surveys the isolation of common drugs and pesticides from biological specimens, including serum, blood and tissue, and the effect of experimental variables on the recovery of compounds, with emphasis on recent trends in extraction techniques and new methods under development, particularly those applicable to forensic toxicology. Traditional liquid-liquid extraction techniques are increasingly being replaced by or used in combination with newer extraction techniques such as solid-phase and supercritical fluid extraction. The potential advantages and problems encountered when incorporating these new methodologies in the isolation of drugs and pesticides from biological matrices are discussed. Although early implementation of solid-phase extraction techniques in forensic toxicology has been hampered by a variety of problems, including extract quality, reproducibility and selectivity, improvements in sorbent quality and elution solvents continue to facilitate their replacement of traditional liquid-liquid extraction methods. Future developments in supercritical fluid extraction should allow this technique to develop in an extremely powerful quantitative tool for the isolation of drugs and pesticides either from solid-phase sorbents or from their endogenous matrices.  相似文献   

20.
固相微萃取在药品和生物样品分析中的应用   总被引:22,自引:0,他引:22  
雷晓玲  王俊德 《色谱》2002,20(3):210-215
 按被分析的样品的性质分类 ,对 2 0世纪 90年代发展起来的一种新型样品预处理技术固相微萃取技术在药品及生物样品分析中的应用实例进行了综述 ,共 6 0篇。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号