首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   2篇
化学   30篇
晶体学   1篇
数学   3篇
物理学   2篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   9篇
  2011年   7篇
  2010年   1篇
  2009年   4篇
  2008年   1篇
  2006年   1篇
  2003年   2篇
排序方式: 共有36条查询结果,搜索用时 15 毫秒
1.
The use of solid-phase microextraction (SPME) for in vivo sampling of drugs and metabolites in the bloodstream of freely moving animals eliminates the need for blood withdrawal in order to generate pharmacokinetics (PK) profiles in support of pharmaceutical drug discovery studies. In this study, SPME was applied for in vivo sampling in mice for the first time and enables the use of a single animal to construct the entire PK profile. In vivo SPME sampling procedure used commercial prototype single-use in vivo SPME probes with a biocompatible extractive coating and a polyurethane sampling interface designed to facilitate repeated sampling from the same animal. Pre-equilibrium in vivo SPME sampling, kinetic on-fibre standardization calibration and liquid chromatography–tandem mass spectrometry analysis (LC–MS/MS) were used to determine unbound and total circulating concentrations of carbamazepine (CBZ) and its active metabolite carbamazepine-10,11-epoxide (CBZEP) in mice (n = 7) after 2 mg/kg intravenous dosing. The method was linear in the range of 1–2000 ng/mL CBZ in whole blood with acceptable accuracy (93–97%) and precision (<17% RSD). The single dose PK results obtained using in vivo SPME sampling compare well to results obtained by serial automated blood sampling as well as by the more conventional method of terminal blood collection from multiple animals/time point. In vivo SPME offers the advantages of serial and repeated sampling from the same animal, speed, improved sample clean-up, decreased animal use and the ability to obtain both free and total drug concentrations from the same experiment.  相似文献   
2.
The tobacco industry produces large quantities of solid and liquid waste. This waste poses a significant environmental problem, as some major components are harmful and toxic. The aim of this work is to isolate and identify the nicotine-degrading microorganisms in the composting of tobacco waste. The bioremediation process for the detoxification of waste was carried out in a column reactor at an airflow-rate of 0.4 L min?1 kg?1. The concentrations of nicotine and number of CFU in the samples taken from reactor were monitored over nineteen days. After nineteen days, 89.8 % of nicotine conversion was obtained. A nicotine-degrading bacterium, strain FN, was isolated from the composting mass and identified as Pseudomonas aeruginosa on the basis of morphology, 16S rDNA sequence, and the phylogenetic characteristics. To confirm that the isolated Pseudomonas aeruginosa FN is the actual nicotine degrader, batch experiments were performed using tobacco leachate. It was confirmed that the strain FN possesses a considerable capacity to degrade nicotine with simultaneous COD removal. The Monod kinetic model for single substrate was applied to obtain the substrate degradation rate and half saturation constant.  相似文献   
3.
4.
GC and MS were used for the analysis of Croatian Centaurium erythraea Rafn essential oil (obtained by hydrodistillation) and headspace (applying headspace solid-phase microextraction). The headspace contained numerous monoterpene hydrocarbons (the major ones were terpinene-4-ol, methone, p-cymene, γ-terpinene and limonene). Oxygenated monoterpenes were present in the headspace and oil, while 1,8-cineole, bornyl acetate and verbenone were present only in the headspace. High headspace percentages of toluene and naphthalene were found, followed by hemimellitene. Lot of similarities were observed with Serbian C. erythraea oil [neophytadiene (1.4%), thymol (2.6%), carvacrol (6.1%) and hexadecanoic acid (5.7%)], but different features were also noted such as the presence of menthol, menthone and phytone. The oil fractionation enabled identification of other minor compounds not found in total oil such as norisoprenoides, alk-1-enes or chromolaenin. The essential oil showed antimicrobial potential on Escherichia coli, Salmonella enteritidis, Staphylococcus aureus and Bacillus cereus. On the other hand, no antibacterial activity of the oil was observed on Pseudomonas fluorescens and Lysteria monocytogenes.  相似文献   
5.
6.
In vivo solid-phase microextraction (SPME) can be used to sample the circulating blood of animals without the need to withdraw a representative blood sample. In this study, in vivo SPME in combination with liquid–chromatography tandem mass spectrometry (LC–MS/MS) was used to determine the pharmacokinetics of two drug analytes, R,R-fenoterol and R,R-methoxyfenoterol, administered as 5 mg kg−1i.v. bolus doses to groups of 5 rats. This research illustrates, for the first time, the feasibility of the diffusion-based calibration interface model for in vivo SPME studies. To provide a constant sampling rate as required for the diffusion-based interface model, partial automation of the SPME sampling of the analytes from the circulating blood was accomplished using an automated blood sampling system. The use of the blood sampling system allowed automation of all SPME sampling steps in vivo, except for the insertion and removal of the SPME probe from the sampling interface. The results from in vivo SPME were compared to the conventional method based on blood withdrawal and sample clean up by plasma protein precipitation. Both whole blood and plasma concentrations were determined by the conventional method. The concentrations of methoxyfenoterol and fenoterol obtained by SPME generally concur with the whole blood concentrations determined by the conventional method indicating the utility of the proposed method. The proposed diffusion-based interface model has several advantages over other kinetic calibration models for in vivo SPME sampling including (i) it does not require the addition of a standard into the sample matrix during in vivo studies, (ii) it is simple and rapid and eliminates the need to pre-load appropriate standard onto the SPME extraction phase and (iii) the calibration constant for SPME can be calculated based on the diffusion coefficient, extraction time, fiber length and radius, and size of the boundary layer. In the current study, the experimental calibration constants of 338.9 ± 30 mm−3 and 298.5 ± 25 mm−3 are in excellent agreement with the theoretical calibration constants of 307.9 mm−3 and 316.0 mm−3 for fenoterol and methoxyfenoterol respectively.  相似文献   
7.
An in situ application of solid-phase microextraction (SPME) as a sampling and sample preparation method coupled to HPLC-MS/MS for direct monitoring of ochratoxin A (OTA) distribution at different locations in a single cheese piece is proposed. To be suited to the acidic analyte, the extraction phase (carbon-tape SPME fiber) was acidified with aqueous solution of HCl at pH 2, instead of the traditional sample pre-treatment with acids before SPME sampling. For calibration, kinetic on-fiber-standardization was used, which allowed the use of short sampling time (20 min) and accurate quantification of the OTA in the semi-solid cheese sample. In addition, the traditional kinetic calibration that used deuterated compounds as standards was extended to use a non-deuterated analogue ochratoxin B (OTB) as the standard of the analyte OTA, which was supported by both theoretical discussion and experimental verification. Finally, the miniaturized SPME fiber was adopted so that the concentration distribution of OTA in a small-sized cheese piece could be directly probed. The detection limit of the resulting SPME method in semi-solid gel was 1.5 ng/mL and the linear range was 3.5–500 ng/mL. The SPME–LC-MS/MS method showed good precision (RSD: ∼10%) and accuracy (relative recovery: 93%) in the gel model. The direct cheese analysis showed comparable accuracy and precision to the established liquid extraction. As a result, the developed in situ SPME–LC-MS/MS method was sensitive, simple, accurate and applicable for the analysis of complicated lipid-rich samples such as cheese.  相似文献   
8.
Non-stationary discrete time waveform relaxation methods for Abel systems of Volterra integral equations using fractional linear multistep formulae are introduced. Fully parallel discrete waveform relaxation methods having an optimal convergence rate are constructed. A significant expression of the error is proved, which allows us to estimate the number of iterations needed to satisfy a prescribed tolerance and allows us to identify the problems where the optimal methods offer the best performance. The numerical experiments confirm the theoretical expectations.  相似文献   
9.
We show that a waveguide that is normally opaque due to interaction with a drop-filter cavity can be made transparent when the drop filter is also coupled to a dipole, even when the vacuum Rabi frequency of the dipole is much less than the cavity decay rate. The condition for transparency is simply achieving large Purcell factors. We describe how this effect can be useful for designing quantum repeaters for long distance quantum communication.  相似文献   
10.
Compared to conventional preparation methods for supported heterogeneous catalysts, the use of colloidal nanoparticles (NPs) allows for a precise control over size, size distribution, and distribution/location of the NPs on the support. However, common colloidal syntheses have restrictions that limit their applicability for industrial catalyst preparation. We present a simple, surfactant‐free, and scalable preparation method for colloidal NPs to overcome these restrictions. We demonstrate how precious‐metal NPs are prepared in alkaline methanol, how the particle size can be tuned, and how supported catalysts are obtained. The potential of these colloids in the preparation of improved catalysts is demonstrated by two examples from heterogeneous catalysis and electrocatalysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号