首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.  相似文献   

2.
To enable high sample throughput, an automated solid-phase microextraction (SPME) method coupled with GC-MS for the trace analysis of technical nonylphenol, bisphenol A and 17alpha-ethinylestradiol was developed. The extraction performance of different SPME fibre coatings was examined, with polyacrylate proving most suitable. Although study of the extraction time showed that the analytes have not reached equilibrium after 3 h, as a compromise an extraction time of 1 h was applied in all the experiments with detection limits between 0.04 and 1 microg l(-1) for wastewater effluent. The mean reproducibility of the technique is 8% RSD. Carry-over effects are negligible. The linearity of calibration curves ranges over three orders of magnitude. The method was tested for determining the analytes in influents and effluents of constructed wetland plants and in model wastewater used in laboratory experiments.  相似文献   

3.
In this study, a new calibration method, standard-free kinetic calibration, is proposed for rapid on-site analysis by solid-phase microextraction (SPME), based on the diffusion-controlled mass transfer model and equilibrium extraction. With this calibration method, all analytes can be directly calibrated with only two samplings. The feasibility of this calibration method was validated in a standard aqueous solution flow-through system and a standard gas flow-through system. The distribution coefficients of five polycyclic aromatic hydrocarbons (PAHs), including naphthalene, acenaphthene, fluorene, anthracene, and pyrene, between water and the PDMS fiber coating were determined and the concentrations of the PAHs in the flow-through system were successfully calibrated with the proposed standard-free calibration method. The extracted amounts of BTEX (benzene, toluene, ethylbezene, o-xylene) at equilibrium were also successfully calibrated with this method with two rapid sampling periods at 5 and 10 s. Compared with the previous calibration methods for rapid on-site analysis by SPME, this method does not require a standard to calibrate the extraction, nor does it require additional equipment to control or measure the flow velocity of the sample matrix. In addition, all of the extracted analytes can be quantified without considering whether the system reached equilibrium. The newly proposed standard-free kinetic calibration approach enriched the calibration methods available for on-site analysis by SPME.  相似文献   

4.
A method has been developed for the trace determination of two sunscreen constituents (2-hydroxy-4-methoxybenzophenone and octyldimethyl-p-aminobenzoic acid) in water samples, which are commonly used in commercial formulations. The method employs solid-phase microextraction (SPME) and gas chromatography with flame ionization and mass spectrometric detection. The technique was developed with headspace and direct sampling in order to demonstrate the applicability of these SPME extraction modes for the identification of these two UV absorbing compounds in waters. The main parameters affecting the SPME process, such as desorption time, extraction time profile, salt additives, pH, and temperature, were investigated. The poly(dimethylsiloxane) 100-microm and polyacrylate 85-microm fiber coatings were found to be the most efficient for the extraction of these compounds from aqueous matrices. Linear calibration curves in the wide range of 10-500 microg/l were obtained for both compounds yielding typical RSD values of 5-9% for both extraction modes. The recoveries were relatively high, 82-98%, with quantitation limits below 1 microg/l. A comparison between the proposed methods and the conventional multiresidue solid-phase extraction revealed that the proposed technique(s) can be reliably used for sunscreen residue measurement in water samples with satisfactory results.  相似文献   

5.
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres, the commonly used HS-SPME equilibration times for aqueous matrices of 30-45 min at room temperature for a number of halogenated and aromatic analytes with volatilities ranging from 1,1-dichloroethylene to hexachlorobenzene were found to be insufficient for the effective extraction of the less volatile analytes from vegetable oil. HS-SPME at 100 degrees C for 45 min, followed by rapid cooling to 0 degrees C with a 10 min continuing extraction, however, significantly increased the SPME efficiencies for the less volatile analytes. Spiking solutions were prepared in vegetable oil instead of methanol as the latter was found to displace analytes from the Carboxen material. Using either of the Carboxen-based fibres and SPME at 100 degrees C, all the target analytes could be determined at low or sub-microg kg(-1) with repeatability < or =10%, even though an equilibrium SPME of the less volatile analytes was not achieved.  相似文献   

6.
When explosives are present in natural aqueous media, their concentration is usually limited to trace levels. A preconcentration step able to remove matrix interferences and to enhance sensitivity is therefore necessary. In the present study, we evaluated solid-phase microextraction (SPME) technique for the recovery of nine explosives from aqueous samples using high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Several parameters, including adsorption and desorption time, coating type, rate of stirring, salt addition, and pH, were optimized to obtain reproducible data with good accuracy. Carbowax coating was the only adsorbent found capable of adsorbing all explosives including nitramines. Method detection limits (MDL) were found to range from 1 to 10 microg/L, depending on the analyte. SPME/HPLC-UV coupling was then applied to the analysis of natural ocean and groundwater samples and compared to conventional solid-phase extraction (SPE/HPLC-UV). Excellent agreement was observed between both techniques, but with an analysis time around five times shorter, SPME/HPLC-UV was considered to be applicable for quantitative analysis of explosives.  相似文献   

7.
Traditional simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) techniques were compared for their effectiveness in the extraction of volatile flavor compounds from various mustard paste samples. Each method was used to evaluate the responses of some analytes from real samples and calibration standards in order to provide sensitivity comparisons between the two techniques. Experimental results showed traditional SDE lacked the sensitivity needed to evaluate certain flavor volatiles, such as 1,2-propanediol. Dramatic improvements in the extraction ability of the SPME fibers over the traditional SDE method were noted. Different SPME fibers were investigated to determine the selectivity of the various fibers to the different flavor compounds present in the mustard paste samples. Parameters that might affect the SPME, such as the duration of absorption and desorption, temperature of extraction, and the polarity and structure of the fiber were investigated. Of the various fibers investigated, the PDMS–DVB fiber proved to be the most desirable for these analytes.  相似文献   

8.
A headspace solid-phase microextraction (HS-SPME) procedure followed by gas chromatography and electron capture detection (GC-ECD) has been developed for the determination of aldehydes in drinking water samples at microg/l concentrations. A previous derivatization with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was performed due to the high polarity and instability of these ozonation by-products. Several SPME coatings were tested and the divinylbenzene-polydimethylsiloxane (DVB-PDMS) coating in being the most suitable for the determination of these analytes. Experimental SPME parameters such as selection of coating, sample volume, addition of salt, extraction time and temperature of desorption were studied. Analytical parameters such as precision, linearity and detection limits were also determined. HS-SPME was compared to liquid-liquid microextraction (proposed in US Environmental Protection Agency Method 556) by analyzing spiked water samples; a good agreement between results obtained with both techniques was observed. Finally, aldehydes formed at the Barcelona water treatment plant (N.E. Spain) were determined at levels of 0.1-0.5 microg/l. As a conclusion, HS-SPME is a powerful tool for determining ozonation by-products in treated water.  相似文献   

9.
Gas chromatography with electron capture detection (GC-ECD) is a highly explosive-sensitive analytical technique. However, its application to the analysis of sediment extracts is hampered by the presence of numerous endogenous interferences. In the present study, solid-phase microextraction (SPME) was used both as a purification technique for sediment extracts and as an extraction technique for water samples prior to analysis by GC-ECD. SPME/GC-ECD coupling was optimized and applied to the trace analysis of nine explosives including nitroaromatics and RDX in real seawater and marine sediment samples. Addition of a high concentration of salt (30%, w/v) in the aqueous medium and use of a carbowax/divinylbenzene (CW/DVB) coating led to optimal extraction efficiencies. Method detection limits (MDLs) ranged from 0.05 to 0.81 microg/L in water and from 1 to 9 microg/kg in dry sediment. Except for RDX, spike recoveries in seawater were satisfactory (89-147%) when samples were fortified at 2 microg/L of each analyte. Spike recoveries from dry sediment fortified at 10 microg/kg of each analyte gave lower recoveries but these could also be due to degradation in the matrix. With a smaller volume of aqueous sample required compared to solid-phase extraction (SPE), SPME is an attractive method for the analysis of limited volumes of sediment pore-water. Moreover, the use of SPME eliminated interferences present in sediment extracts thus allowing the detection of the target analytes that were otherwise difficult to detect by direct injection.  相似文献   

10.
Headspace solid-phase microextraction (SPME), as a simple, solvent-free method, has been applied to the analysis of 10 chlorinated benzenes (CBs) present at trace levels in water samples. An SPME fibre coated with 100-microm thick poly(dimethylsiloxane) was used for extraction. The analytical data exhibited a relative standard deviation (RSD) range of 1.19% (for pentachlorobenzene) to 8.19% (for hexachlorobenzene) for the 10 CBs; the RSD of most compounds was under 6%. The sensitivity of the method was enhanced with agitation and with addition of salt to the sample solutions. With mass spectrometric detection, the limit of detection was below 0.006 microg/l for all 10 CBs after a 30-min sampling time. The linearity range was 0.02-20 microg/l for the compounds studied. Water samples collected from a reservoir, and from the tap in a laboratory were analysed using the optimised conditions.  相似文献   

11.
Optimal conditions of headspace solid-phase microextraction followed by gas chromatography coupled to pulsed flame photometric detection (SPME–GC–PFPD) have been investigated to validate the analysis of 11 organotin compounds in plant matrices including methyl-, butyl-, and phenyltin compounds. The extraction of organotin compounds from vegetal matrices has been carried out using optimized conditions of HCl-based extraction. The use of headspace SPME to preconcentrate the analytes allowed most of the detection limits to be obtained sub-0.5?ng(Sn)?g?1. The precision evaluated using RSD with six replicates ranges between 5 and 10% (except for triphenyltin: 17%). The accuracy of the method was validated on spiked or polluted vegetal samples taken from Bizerte Lagoon (Tunisia) and by comparison with classical liquid–liquid extraction (LLE). These results highlight the suitability of the selected method for organotin control in complex environmental matrices such as aquatic plants.  相似文献   

12.
An electric drill coupled with a solid-phase microextraction (SPME) polydimethylsiloxane (PDMS) fiber or a PDMS thin film was used for rapid sampling of polycyclic aromatic hydrocarbons (PAHs) in aqueous samples. Laboratory experiments demonstrated that the sampling rates of SPME fiber and thin film can be predicted theoretically. Compared with the SPME fiber, the PDMS thin film active sampler exhibited a higher sampling rate and much better sensitivity due to its higher surface-to-volume ratio and its larger extraction phase volume. The amount of the analytes extracted by the thin film was around 100 times higher than those obtained by fiber, for both 5 min rapid sampling and equilibrium extraction. A new thin film active sampler was then developed for rapid on-site water sampling. The sampling kit included a portable electric drill, a copper mesh pocket, a piece of thin film, and a liner. Laboratory experiments indicated that the sampling remained in the linear uptake phase with this sampler to 8 min for the PAHs. Field test illustrated that this novel sampler was excellent for rapid on-site water sampling due to its short sampling period, high sampling efficiency and durability The thin film sampling kit facilitates on-site sampling, sample preparation, storage and transport. This new sampler is more user-friendly and easier to commercialize than previous samplers.  相似文献   

13.
A method for trace analysis of a wide range of aldehydes (saturated/unsaturated aliphatic, aromatic aldehydes, including hydroxylated species, and dialdehydes) in an aqueous solution was optimized. An evaluation of three solid-phase microextraction (SPME) techniques (headspace, liquid-phase, and on-fiber derivatization) with o-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) aldehyde derivatization was performed focusing on the optimization of the main extraction parameters (temperature and time). The optimized method employed the liquid-phase SPME (D-L-SPME) of derivatized aldehydes at 80 degrees C for 30 min. Limits of detection (LODs) using this optimal method were in the range of 0.1-4.4 microg/L for the majority of aliphatic (saturated, unsaturated), aromatic aldehydes and dialdehydes. Formaldehyde LODs and those of some hydroxylated aromatic aldehydes were between 32 and 55 microg/L. Headspace SPME using an on-fiber derivatization generally showed a lower sensitivity and several compounds were not detected. Another technique, the optimized headspace SPME of aldehydes derivatized in aqueous solution, was not as sensitive as D-L-SPME for hydroxylated aromatic aldehydes. The developed method was used to analyze aqueous particulate matter extracts; this method achieved higher sensitivities than those obtained with US Environmental Protection Agency (EPA) Method 556.  相似文献   

14.
Novel sampling and detection methods using desorption electrospray ionization (DESI) are examined in the detection of explosives (RDX, TNT, HMX, and TNB) and agricultural chemicals (atrazine, alachlor and acetochlor) from aqueous matrices and authentic contaminated groundwater samples. DESI allows analysis of solid and liquid compounds directly from surfaces of interest with little or no sample preparation. Significant savings in analysis time and sample preparation are realized. The methods investigated here include (i) immediate analysis of filter paper wetted with contaminated water samples without further sample preparation, (ii) rapid liquid-liquid extraction (LLE), and (iii) analyte extraction from contaminated groundwater samples on-site using solid-phase extraction (SPE) membranes, followed by direct DESI analysis of the membrane. The wetted filter paper experiment demonstrates the maximum sample throughput for DESI analysis of aqueous matrices but has inadequate sensitivity for some of these analytes. Both the LLE and the SPE methods have adequate sensitivity. The resulting SPE membranes and/or small volume solvent extracts produced in these experiments are readily transported to off-site facilities for direct analysis by DESI. This realizes a significant reduction in the costs of sample shipping compared with those for typical liter-sized samples of groundwater. Total analysis times for these preliminary DESI analyses are comparable with or shorter than those for GC/MS and limits of detection approach environmental action levels for these compounds while maintaining a modest relative standard deviation. Tandem mass spectrometric data is used to provide additional specificity as needed.  相似文献   

15.
In this paper the most recent developments in the microextraction of polar analytes from aqueous environmental samples are critically reviewed. The particularities of different microextraction approaches, mainly solid-phase microextraction (SPME), stir-bar-sorptive extraction (SBSE), and liquid-phase microextraction (LPME), and their suitability for use in combination with chromatographic or electrically driven separation techniques for determination of polar species are discussed. The compatibility of microextraction techniques, especially SPME, with different derivatisation strategies enabling GC determination of polar analytes and improving their extractability is revised. In addition to the use of derivatisation reactions, the possibility of enhancing the yield of solid-phase microextraction methods for polar analytes by using new coatings and/or larger amounts of sorbent is also considered. Finally, attention is also focussed on describing the versatility of LPME in its different possible formats and its ability to improve selectivity in the extraction of polar analytes with acid-base properties by using separation membranes and buffer solutions, instead of organic solvents, as the acceptor solution.  相似文献   

16.
Quantification of trace concentrations of transformation products of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in water requires complex analytical instrumentation and tedious sample preparation. The goal of this research was to develop a simple and automated method for sensitive quantification of UDMH transformation products in water using headspace (HS) solid-phase microextraction (SPME) in combination with GC-MS and GC-MS/MS. HS SPME is based on extraction of analytes from a gas phase above samples by a micro polymer coating followed by a thermal desorption of analytes in a GC inlet. Extraction by 85 µm Carboxen/polydimethylsiloxane fiber at 50 °C during 60 min provides the best combination of sensitivity and precision. Tandem mass spectrometric detection with positive chemical ionization improves method accuracy and selectivity. Detection limits of twelve analytes by GC-MS/MS with chemical ionization are about 10 ng L?1. GC-MS provides similar detection limits for five studied analytes; however, the list of analytes detected by this method can be further expanded. Accuracies determined by GC-MS were in the range of 75–125% for six analytes. Compared to other available methods based on non-SPME sample preparation approaches (e.g., liquid–liquid and solid-phase extraction), the developed method is simpler, automated and provides lower detection limits. It covers more UDMH transformation products than available SPME-based methods. The list of analytes could be further expanded if new standards become available. The developed method is recommended for assessing water quality in the territories affected by space activities and other related studies.  相似文献   

17.
In-tube solid-phase microextraction (SPME) is an automated version of SPME that can be easily coupled to a conventional HPLC autosampler for on-line sample preparation, separation and quantitation. It has been termed "in-tube" SPME because the extraction phase is coated inside a section of fused-silica tubing rather than coated on the surface of a fused-silica rod as in the conventional syringe-like SPME device. The new in-tube SPME technique has been demonstrated as a very efficient extraction method for the analysis of polar and thermally labile analytes. The in-tube SPME-HPLC method used with the FAMOS autosampler from LC Packings was developed for detecting polar carbamate pesticides in clean water samples. The main parameters relating to the extraction and desorption processes of in-tube SPME (selection of coatings, aspirate/dispense steps, selection of the desorption solvents, and the efficiency of desorption solvent, etc.) were investigated. The method was evaluated according to the reproducibility, linear range and limit of detection. This method is simple, effective, reproducible and sensitive. The relative standard deviation for all the carbamates investigated was between 1.7 and 5.3%. The method showed good linearity between 5 and 10000 microg/l with correlation coefficients between 0.9824 and 0.9995. For the carbamates studied, the limits of detection observed are lower than or similar to that of US Environmental Protection Agency or National Pesticide Survey methods. Detection of carbaryl present in clean water samples at 1 microg/l is possible.  相似文献   

18.
A commercial in-tube sorptive extraction device, known as solid-phase dynamic extraction (SPDE), has been evaluated for the extraction of non-polar volatile aromatic analytes from aqueous solutions in both headspace and liquid injection modes. An automated sampler is used with a gas-tight 2.5 ml syringe equipped with a special needle that is coated on the inside with a non-polar extraction phase. After absorption onto the phase, the analytes were thermally desorbed directly into a GC-MS system. The technique was evaluated for the determination of furan, benzene and toluene. The sensitivity for toluene was greatly improved on using SPDE compared to static headspace. A slight increase in sensitivity was observed for benzene but none for determination of furan. Estimated limits of detection ranged from 0.2 to 2 microg/l.  相似文献   

19.
近年来,与实时直接分析质谱(DART-MS)相结合的样品预处理技术发展迅速,使得对复杂生物、环境、法医学、食品、个体小生物以及单细胞样品中的分析物进行直接分析成为可能。然而固体基质内部分析物检测困难、痕量分析物检测性能不佳已成为限制DART-MS进一步发展的关键问题。针对这些问题,多年来,研究人员在不同领域对样品预处理与质谱联用进行了多种尝试。该文以固相萃取(SPE)、分散固相萃取(DSPE)、搅拌棒吸附萃取(SBSE)、固相微萃取(SPME)、机械化学提取(MCE)和微波提取(MAE)等样品预处理技术为例,对不同研究领域中样品预处理技术与DART-MS联用的研究成果进行了综述,并对未来的发展趋势进行了展望。希望该综述能为开发与DART-MS联用的新型样品处理技术提供参考和帮助。  相似文献   

20.
Exposing a microlitre organic solvent drop to the headspace of an aqueous sample contaminated with ten chlorobenzene compounds proved to be an excellent preconcentration method for headspace analysis by gas chromatography-mass spectrometry (GC-MS). The proposed headspace single-drop microextraction (SDME) method was initially optimised and the optimum experimental conditions found were: 2.5 microl toluene microdrop exposed for 5 min to the headspace of a 10 ml aqueous sample containing 30% (w/v) NaCl placed in 15 ml vial and stirred at 1000 rpm. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9901 and 0.9971, except for hexachlorobenzene where the correlation coefficient was found to be 0.9886. The repeatability of the proposed method, expressed as relative standard deviation varied between 2.1 and 13.2% (n = 5). The limits of detection ranged between 0.003 and 0.031 microg/l using GC-MS with selective ion monitoring. Analysis of spiked tap and well water samples revealed that matrix had little effect on extraction. A comparative study was performed between the proposed method, headspace solid-phase microextraction (SPME), solid-phase extraction (SPE) and EPA method 8121. Overall, headspace SDME proved to be a rapid, simple and sensitive technique for the analysis of chlorobenzenes in water samples, representing an excellent alternative to traditional and other, recently introduced, methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号