首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state emission spectroscopy of 1-anilino-8- naphthalene sulfonate (ANS) and 1,6-diphenyl-1,3,5-hexatriene (DPH), fluorescence anisotropy, and DSC methods were used to characterize the interactions of the newly synthesized 1-carba-alpha-tocopherol (CT) with a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membrane. The DSC results showed significant perturbations in the DPPC structure for CT concentrations as low as 2 mol%. The main phase transition peak was broadened and shifted to lower temperatures in a concentration-dependent manner, and pretransition was abolished. Increasing CT concentrations induced the formation of new phases in the DPPC structure, leading to melting at lower temperatures and, finally, disruption of the ordered DPPC structure. Hydration and structural changes of the DPPC liposomes using ANS and DPH fluorescent probes, which are selectively located at different places in the bilayer, were studied. With the increased concentration of CT molecules in the DPPC liposomes, structural changes with the simultaneous formation of different phases of such mixture were observed. Temperature studies of such mixtures revealed a decrease in the temperature of the main phase transition and fluidization at decreasing temperatures related to increasing hydration in the bilayer. Contour plots obtained from concentration–temperature data with fluorescent probes allowed for identification of different phases, such as gel, ordered liquid, disordered liquid, and liquid crystalline phases. The CT molecule with a modified chromanol ring embedded in the bilayer led to H-bonding interactions, expelling water molecules from the interphase, thus introducing disorder and structural changes to the highly ordered gel phase.  相似文献   

2.
Perfluorooctane-1-sulfonic acid (PFOS) is emerging as an important persistent environmental pollutant. To gain insight into the interaction of PFOS with biological systems, the mixing behavior of dipalmitoylphosphatidylcholine (DPPC) with PFOS was studied using differential scanning calorimetry (DSC) and fluorescence anisotropy measurements. In the DSC experiments the onset temperature of the DPPC pretransition (Tp) decreased with increasing PFOS concentration, disappearing at XDPPC < or = 0.97. The main DPPC phase transition temperature showed a depression and peak broadening with increasing mole fraction of PFOS in both the DSC and the fluorescence anisotropy studies. From the melting point depression in the fluorescence anisotropy studies, which was observed at a concentration as low as 10 mg/L, an apparent partition coefficient of K = 5.7 x 10(4) (mole fraction basis) was calculated. These results suggest that PFOS has a high tendency to partition into lipid bilayers. These direct PFOS-DPPC interactions are one possible mechanism by which PFOS may contribute to adverse effects, for example neonatal mortality, in laboratory studies and possibly in humans.  相似文献   

3.
A position-sensitive proportional counter (PSPC) x-ray measuring system is employed to observe directly phase transition processes of polyethylene at high temperature and high pressure. X-ray diffraction measurements reveal important new experimental data. First, an irreversible crystal transition from the hexagonal to the orthorhombic structures occurs in the critical region where the hexagonal structure begins to appear at a pressure of 350 MPa. That is, the (100) hexagonal reflection is observed only on cooling at 350 MPa. At pressures above about 400 MPa, however, the hexagonal phase is stable and the phase transitions melt ? hexagonal ? orthorhombic occur reversibly. Second, during cooling at pressures above 400 MPa, the (100) hexagonal reflection can be observed at temperatures below the hexagonal ? orthorhombic transition temperature. This behavior suggests that all the crystal morphologies of polyethylene, from “highly-extended-chain” crystals to crystals with a low melting point, are formed by the transitions melt → hexagonal → orthorhombic. Third, in heating at elevated pressures above 500 MPa, a shoulder in the peak intensity versus temperature plot for the (100) hexagonal reflection is observed at a higher temperature than the large maximum which occurs immediately after the crystal transition. This behavior indicates melting in two stages of hexagonal structures with different thermal stabilities, and the shoulder at higher temperature may be due to the fusion of the hexagonal phase annealed either below or above the transition point.  相似文献   

4.
To understand more fully the effect of polyunsaturated fatty acids (PUFAs) on lipid bilayers, we investigated the effects of treatment with fatty acids on the properties of a model membrane. Three kinds of liposomes comprising dipalmitoylphosphatidylcholine (DPPC), dioleylphosphatidylcholine (DOPC), and cholesterol (Ch) were used as the model membrane, and the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH) and detergent insolubility were determined. Characterization of the liposomes clarified that DPPC, DPPC/Ch, and DPPC/DOPC/Ch existed as solid-ordered phase (L beta), liquid-ordered phase (l o), and a mixture of l o and liquid-disordered phase (L alpha) membranes at room temperature. Treatment with unsaturated fatty acids such as oleic acid (OA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) markedly decreased the fluorescence anisotropy value and detergent insolubility. PUFAs and OA had different effects on the model membranes. In DPPC liposomes, the most prominent change was induced by PUFAs, whereas, in DPPC/Ch and DPPC/DOPC/Ch liposomes, OA had a stronger effect than PUFAs. The effect of PUFAs was strongly affected by the amount of Ch in the membrane, which confirmed a specific effect of PUFAs on the Ch-poor membrane domain. We further explored the effect of fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted on the membranes even when incorporated in emulsion form. These findings suggest that treatment with PUFAs increases the segregation of ordered and disordered phase domains in membranes.  相似文献   

5.
The effects of poly(ethylene glycol) (PEG) chain length of PEG-lipid on the membrane characteristics of liposomes were investigated by differential scanning calorimetry (DSC), freeze-fracture electron microscopy (FFEM), fluorescence polarization measurement and permeability measurement using carboxyfluorescein (CF). PEG-liposomes were prepared from mixtures of dipalmitoyl phosphatidylcholine (DPPC) and distearoyl phosphatidylethanolamines with covalently attached PEG molecular weights of 1000, 2000, 3000 and 5000 (DSPE-PEG). DSC and FFEM results showed that the addition of DSPE-PEG to DPPC in the preparation of liposomes caused the lateral phase separation both in the gel and liquid-crystalline states. The fluidity in the hydrocarbon region of liposomal bilayer membranes was not significantly changed by the addition of DSPE-PEG, while that in the interfacial region was markedly increased. From these results, it was anticipated that the CF leakage from PEG-liposomes is accelerated compared with DPPC liposomes. However, CF leakage from liposomes containing DSPE-PEG with a 0.060 mol fraction was depressed compared with regular liposomes, and the leakage decreased with increasing PEG chain length. Furthermore, the CF leakage from liposomes containing DSPE-PEG with a 0.145 mol fraction was slightly increased compared with that of liposomes containing DSPE-PEG with a 0.060 mol fraction. It is suggested that the solute permeability from the PEG-liposomes was affected by not only properties of the liposomal bilayer membranes such as phase transition temperature, phase separation and membrane fluidity, but also the PEG chain of the liposomal surface.  相似文献   

6.
We investigated the physicochemical properties of B30-MDP [6-O-(2-tetradecylhexadecanoyl)-N-acetyl-muramyl-L-alanyl-D-isoglutamine], a muramyldipeptide derivative having immunoadjuvant activity [1], using polarizing optical microscopy, differential scanning calorimetry (DSC), and electron spin resonance (ESR) spectroscopy. Microscopic observations showed that B30-MDP molecules form myelin figures in phosphate buffered saline (PBS). It was revealed that B30-MDP forms membranous structure because of an increase in the hydrophobicity. In the DSC measurements, the B30-MDP membrane in PBS gave no endothermic peak between 5° to 50°C. Enthalpy change upon the phase transition from the gel to liquid crystalline state or dipalmitoylphosphatidylcholine (DPPC) membrane and its phase transition temperature decreased by the addition of B30-MDP. ESR measurements using 5 doxyl stearic acid showed that the fluidity of the B30-MDP membrane was almost comparable to that of DPPC membrane at the temperature below the phase transition temperature of DPPC, while it was lower than that of DPPC at the temperature higher than this point. The fluidity of DPPC membrane increased upon the addition of B30-MDP. These results indicate that B30-MDP forms membranous structure and that the bulky hydrophilic region of B30-MDP influences its membrane structures, thermal behavior, and membrane fluidity.  相似文献   

7.
Thermotropic phase behaviors of paeonol-encapsulated liposomes containing stigmasterol or cholesterol have been investigated by differential scanning calorimetry. We compared the thermotropic phase behavior of pure dipalmitoylphosphatidylcholine (DPPC) liposomes, sterol/DPPC liposomes, and paeonol/sterol/DPPC liposomes increasing the ratio of paeonol to sterol from 0 to 1, by analyzing the calorimetric parameters of main phase transition of liposomes including phase transition temperature (onset temperature and peak temperature) and phase transition cooperativity. The results showed that paeonol could incorporate into the hydrophobic region of DPPC, thus, decrease phase transition temperature of DPPC. Though stigmasterol interacts with DPPC less favorably than cholesterol, thermotropic phase behavior of paeonol/cholesterol/DPPC liposomes and that of paeonol/stigmasterol/DPPC liposomes are very similar. A phase separation occurred when the molar ratio of paeonol to sterol reached 1:1 in paeonol-encapsulated liposomes, where a paeonol-rich domain coexisted with a sterol-rich domain. The packing order of acyl chains of DPPC in sterol-rich domain is a little higher than that in paeonol-rich domain.  相似文献   

8.
DPPC incorporation into egg-PC unilamellar vesicles reduces their oxidation rate beyond that expected from the unsaturated lipid dilution. Addition of the unsaturated lipids produces changes in the physical properties of the inner parts of the lipid bilayer, as sensed by fluorescence anisotropy of DPH, and in the hydrophilic/hydrophobic region, as sensed by the generalized polarization of laurdan. DPPC (30 mol%) incorporation into egg-PC vesicles produces a decrease in alkyl chain mobility in the inner part of the bilayer, evaluated by the increase of DPH fluorescence anisotropy, and a rise of the generalized polarization value of laurdan in the bilayer interface. It also leads to a decrease in the rate of water efflux promoted by a hypertonic shock. Oxidation of PC LUVs, promoted by AAPH, as sensed by oxygen uptake and MDA formation, leads to qualitatively similar results than DPPC addition: rigidification at the inner part and the surface of the liposomes, and a lower rate of water permeation. It is suggested that these changes could contribute to the observed decrease in oxidation rate with conversion.  相似文献   

9.
The interaction of five poly[L-lysine]-derived branched chain polypeptides of poly[Lys(X(i))] (X(i)K) or poly[Lys(X(i)-DL-Ala(m))] (XAK) with lipid bilayers (DPPC and DPPC/PG, 8:2) was studied by fluorescence polarization techniques. Two fluorescent probes, DPH and TMA-DPH, were utilized to monitor changes of motion in the internal and/or in the polar head regions, respectively. Results indicate that the interaction of polypeptides with neutral (DPPC) bilayers is mainly dependent on the polarity and electrical charge of side chains. The amphoteric E(i)K shows the highest level of interaction. Polycationic polypeptides (H(i)K, P(i)K, TAK) have a relatively small effect on the transition temperature of the lipids, while the polyanionic Succ-EAK has no effect at the alkyl chain region of the bilayer. Data with TMA-DPH indicate the lack of pronounced interaction between the polypeptides and the outer surface of the liposome. Similar tendency was documented for DPPC/PG vesicles. Polypeptides, H(i)K, and P(i)K induce significant changes in the transition temperature, thus indicating their insertion into the hydrophobic core of the bilayer without marked effect on the polar head region. Results suggest that these polypeptides (except E(i)K) have no destabilizing effect on liposomes studied. These properties are considered as beneficial for their use as safe carriers for bioactive molecules.  相似文献   

10.
Temperature measurements have been made within magnetite (Fe(3)O(4)) nanoparticle-liposome dispersions subjected to electromagnetic field at radiofrequency (RF) heating based on the fluorescence anisotropy of diphenylhexatriene (DPH) embedded within the bilayer. Incorporating cholesterol within dipalmitoylphosphatidylcholine (DPPC) bilayers broadened the anisotropy window associated with lipid melting. Cryogenic transmission electron microscopy showed that the dispersions contained magnetoliposomes with nanoparticle aggregates at both low and high encapsulation densities. RF heating results demonstrated the ability to measure the temperature of the ML bilayer with on/off RF cycles using DPH anisotropy. These measurements reflected the temperature of the bulk aqueous phase, which is consistent with previous work showing rapid heat dissipation from a nanoparticle surface during RF heating and a negligible difference between surface and bulk temperature.  相似文献   

11.
The surface activities of lysozyme and dipalmitoyl phosphatidylcholine (DPPC) vesicles at aqueous/compressed fluid interfaces are examined via high-pressure interfacial tension measurements using the pendant drop technique. The density and interfacial tension in compressible fluid systems vary significantly with pressure, providing a versatile medium for elucidating interactions between biomolecules and fluid interfaces and a method to elicit pressure-dependent interfacial morphological responses. The effects of lysozyme concentration (0.0008, 0.01, and 1 mg/mL) and pressure (> or = 7 MPa) on the dynamic surface response in the presence of ethane, propane, N2, and CO2 at 298 K were examined. Interfacial lysozyme adsorption reduced the induction phase and quickly led to interfacial tensions consistent with protein conformational changes and monolayer saturation at the compressed fluid interfaces. Protein adsorption, as indicated by surface pressure, correlated with calculated Hamaker constants for the compressed gases, denoting the importance of dispersion interactions. For DPPC at aqueous/compressed or aqueous/supercritical CO2 interfaces (1.8-20.7 MPa, 308 K), 2-3-fold reductions in interfacial tension were observed relative to the pure binary fluid system. The resulting surface pressures infer pressure-dependent morphological changes within the DPPC monolayer.  相似文献   

12.
We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form.  相似文献   

13.
Gold nanoparticles were loaded in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Above the gel to liquid-crystalline phase transition temperature, membrane fluidities of DPPC liposomes were changed by loading the gold nanoparticles. Compared with liposomes without loading the gold nanoparticles, gold-loaded liposomes showed the lower fluorescence anisotropy values. That is, the membrane fluidities of DPPC bilayer were increased by loading the gold nanoparticles. The membrane fluidities were increased as the amount of gold nanoparticles increased. The existence of gold nanoparticles in the DPPC bilayer was observed by transmission electron microscopy. Through the energy dispersive X-ray spectrometer, the particles in DPPC bilayer were confirmed to be gold nanoparticles.  相似文献   

14.
This study presents the application of the mixture design technique to develop an optimal liposome formulation by using the different lipids in type and percentage (DOPC, POPC and DPPC) in liposome composition. Ten lipid mixtures were generated by the simplex-centroid design technique and liposomes were prepared by the extrusion method. Liposomes were characterized with respect to size, phase transition temperature, ζ-potential, lamellarity, fluidity and efficiency in loading calcein. The results were then applied to estimate the coefficients of mixture design model and to find the optimal lipid composition with improved entrapment efficiency, size, transition temperature, fluidity and ζ-potential of liposomes. The response optimization of experiments was the liposome formulation with DOPC: 46%, POPC: 12% and DPPC: 42%. The optimal liposome formulation had an average diameter of 127.5 nm, a phase-transition temperature of 11.43 °C, a ζ-potential of -7.24 mV, fluidity (1/P)(TMA-DPH)((?)) value of 2.87 and an encapsulation efficiency of 20.24%. The experimental results of characterization of optimal liposome formulation were in good agreement with those predicted by the mixture design technique.  相似文献   

15.
The thermotropic behavior of dipalmitoylphosphatidylcholine (DPPC) multibilayers containing up to 10 mol% of lyso-palmitoylphosphatidylcholine (lyso-PPC) with and without low content of poly(ethylene glycol:2000)-grafted dipalmitoylphosphatidylethanolamine (PEG:2000-DPPE) has been studied by high sensitivity differential scanning calorimetry (DSC) and electron spin resonance (ESR) using the spin probe di-tert-butyl-nitroxide (DTBN). The three lipids, dispersed in buffer at appropriate concentrations, form thermosensitive liposomes used as site-specific drug-delivery systems. Without polymer–lipids, the DPPC main transition temperature is downshifted of 1.2–1.3 °C at the highest lyso-PPC content. The molar enthalpy and the cooperative unit of the DPPC main transition first decrease rapidly, then more slowly and finally slightly increase with lyso-PPC content. Moreover, in the mixed dispersions, the membrane fluidity increases at any temperature. The addition up to 5 mol% of PEG:2000-DPPE to DPPC/10 mol% lyso-PPC mixtures does not affect neither the thermotropic phase behavior nor the transition cooperativity and the fluidity of the dispersions.  相似文献   

16.
The effect of CO2 on the phase behavior of the reaction system and equilibrium conversion for esterification of acetic acid and ethanol in ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate, [bmim][HSO4]) was studied at 60.0 degrees C up to 15 MPa. It was demonstrated that there was only one phase in the reaction system in the absence of CO2. The reaction system underwent two-phase-->three-phase-->two-phase transitions with increasing pressure. The pressure of CO2 or the phase behavior of the system affected the equilibrium conversion of the reaction markedly. As the pressure was less than 3.5 MPa, there were two phases in the system, and the equilibrium conversion increased as pressure was increased. In the pressure range of 3.5-9.5 MPa, there existed three phases, and the equilibrium conversion increased more rapidly with increasing pressure. As the pressure was higher than 9.5 MPa, the reaction system entered another two-phase region and the equilibrium conversion was nearly independent of pressure. The total equilibrium conversion was 64% without CO2 and could be as high as 80% as pressure was higher than 9.0 MPa. The apparent equilibrium constants (K(x)) in different phases were also determined, showing that the K(x) in the middle phase or top phase was much greater than that in the bottom phase.  相似文献   

17.
Summary DSC and EPR experiments were performed on human erythrocyte membranes and DPPC vesicles in order to study the effect of the anaesthetic drug tetracaine on structure and dynamics of the lipid region. Experiments using spin label technique showed that tetracaine induced fluidity changes of the lipid region in the environment of the fatty acid probe molecules incorporated into the membranes in the vicinity of the lipid-water interface. Similarly to EPR observations, DSC measurements reported decrease of the main melting and the pretransition temperature in comparison to control DPPC vesicles, which is the sign of destabilisation of the structure in the head group region of the lipids. Similar effect was observed in the case of erythrocytes where the protein conformation was also controlled in the presence of drug. A separated membrane melting with well distinguished membrane protein phase transition was found that was affected significantly by tetracaine. These results suggest that tetracaine is able to modify not only the internal dynamics of erythrocyte membranes and produce destabilisation of the lipid structure, but the protein system as well. These might lead to further damage of the biological functions.  相似文献   

18.
The current work makes use of different fluorescent reporter molecules and fluorescent spectroscopic techniques to characterize the thermotropic, physical, and dynamical properties of large unilamellar liposomes formed from either 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-glycerol] (DMPG) encapsulated in sol-gel matrixes. In particular, cooperativity of the phase transition is analyzed from steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), the interfacial properties are studied by measuring the spectral shift of Laurdan, and the structural organization (heterogeneity) of the lipid bilayer is determined from the fluorescence lifetime of trans-parinaric acid (t-PnA). In addition, information regarding order and dynamical properties in the bulk hydrophobic core is obtained from time-resolved fluorescence anisotropy of t-PnA and 3-(4-(6-phenyl)-1,3,5-hexatrienyl)-phenylpropionic acid (PA-DPH). The spectroscopic study reveals that upon encapsulation, the basic thermodynamic properties as well as the fluidity of the lipid bilayer practically remain intact for DMPG liposomes but not for DMPC liposomes, whose lipid bilayer exhibits large gel-fluid heterogeneity. On the basis of these experimental results, electrostatic interactions between phospholipid polar heads and the porous surface of the host matrix seem to play a capital role for the preservation of the structural integrity of encapsulated bilayer.  相似文献   

19.
This paper describes the formation and characterization of liposome entrapping the silver nanoparticles in bilayer. Silver nanoparticles were entrapped in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposome, named as silver-loaded liposome. Specifically, above the gel to liquid-crystalline phase transition temperature of this lipid (i.e., 41 degrees C), it was observed that membrane fluidities of silver-loaded liposomes were increased, and fluorescence anisotropy values were reduced from 0.114 to 0.097. This might be due to the structural modifications and interactions between DPPC molecules and silver nanoparticles within the bilayer. It was also confirmed that silver nanoparticles were entrapped in hydrophobic region of lipid bilayer with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) measurements.  相似文献   

20.
The effects of soybean-derived sterylglucoside (SG) on the fluidity of liposomal membrane composed of dipalmitoylphosphatidylcholine (DPPC) were investigated compared with those of soybean-derived sterol (SS) and cholesterol (Ch) using an electron spin resonance spectrometer. Three kinds of liposomes were prepared in the molar ratio of DPPC/X=7/4, where X is SS, Ch or SG. The fluidity close to the polar head groups increased with an increase of temperature in the DPPC membrane containing SS, Ch and SG in the range 35 to 45 degrees C. Those near the hydrophobic end changed with an increase in temperature in liposomes containing SS, Ch and SG, which had a fluidizing effect on the DPPC membrane below the transition temperature (Tm, 41.9 degrees C) and a condensing effect over the Tm. The fluidizing effects of these compounds around 37 degrees C near the polar head group and the hydrophobic end increased in the following order: Ch < SG < or = SS and SS < Ch < SG, respectively. SG increased the fluidity of liposomal membrane dramatically above the Tm (35.4 degrees C). These results suggest that the high fluidity close to the hydrophobic end of the liposomal membranes around 37 degrees C, the decrease of Tm, and the sigmoidal nature of fluidity vs. temperature are important factors in the effectiveness of liposomes containing SG as a carrier of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号