首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reinforcing effects of highly effective flame retardant magnesium hydroxide (FMX) content on the tensile and flexural properties of filled polypropylene (PP) composites were investigated within the FMX weight fraction range from 5 to 60 wt%. It was found that the Young's modulus and flexural modulus increased approximately linearly while the tensile yield strength and tensile fracture strength decreased slightly with increasing the FMX weight fraction. When the FMX weight fraction was lower than 20%, the tensile elongation at break decreased considerably, and then decreased slightly; the flexural strength increased when the FMX weight fraction was lower than 30%, and then decreased slightly. The tensile properties increased with increasing rate of tension. Moreover, the tensile yield strength of the composites was estimated using an equation proposed in previous work, and good agreement was shown between the predicted and the measured data.  相似文献   

2.
The intumescent flame retardant (IFR) filled polypropylene (PP) composites were prepared using a twin‐screw extruder. The tensile and impact fracture behavior of the composites were measured at room temperature. It was found that the Young's modulus increased roughly, while the tensile strength decreased slightly with increasing the IFR weight fraction; the toughening effect of the filler on the PP resin was significant. Both the V‐notched Izod impact strength and the V‐notched Charpy impact strength of the PP/IFR composites showed a nonlinear increase with increasing the filler weight fraction (φf) as φf was less than 20%, then it decreased. The limited oxygen index of the composites increases nonlinearly with increasing φf. The relationship between them obeyed a quadratic equation. The impact fracture surface was observed by means of a scanning electronic microscope to understand the toughening mechanisms for the composite systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
In this article, the tensile strength, impact, and hardness properties of silicon carbide (SiC) reinforced with polyamide 6 (PA6) are described for the first time. The composites were fabricated by an injection molding method using the SiC with varying weight percentages. The tensile and hardness of SiC/PA6 composites showed a regular trend of increasing tensile strength, impact, and hardness properties with varying weight percentages until 10 wt% and impact strength of SiC/PA6 composites increased up to 5 wt% afterwards decreasing the mechanical properties of the composite with greater weight percentages. Scanning electron microscope (SEM) studies were carried out to evaluate the SiC/PA6 interactions. The results related to SiC/PA6 composites were compared with those obtained for pure PA6.  相似文献   

4.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

5.
The impact behaviour of self-reinforced polypropylene (PP) composites was studied. α and β polymorphs of isotactic PP homopolymer and random copolymer (with ethylene) were used for matrix materials, whereas the reinforcement was a fabric woven from highly stretched split PP yarns. The composite sheets were produced by the film-stacking method and consolidated by hot pressing at 5 and 15 °C above the melting temperature (Tm) of the matrix-giving PP grade. The composite sheets were subjected to static tensile, dynamic falling weight impact and impact tensile tests at room temperature. Dynamic mechanical thermal analysis (DMTA) was also performed on the related composites and their constituents. The results indicated that the β-modification of the PP homopolymer is more straightforward than that of the PP copolymer. Stiffness and strength usually increased while the toughness (tensile impact strength, perforation impact energy) decreased with increasing temperature of consolidation. This was assigned to differences in the failure mode based on fractographic results.  相似文献   

6.
This paper studies the effects of zinc oxide (ZnO) on morphology and mechanical properties of pure polyoxymethylene (POM) and POM/ZnO composites. POM/ZnO composites with varying concentration of ZnO were prepared by melt mixing technique in a twin screw extruder. The dispersion of ZnO particles on POM composites was studied by scanning electron microscope (SEM). It is observed that the dispersion of ZnO particles is relatively good. The mechanical properties of the composites such as tensile strength, stress at break, Young's modulus and impact strength were measured. Increasing content of ZnO up to 4.0 wt% increases the impact strength of POM. Addition of ZnO beyond 4.0 wt% decreases the impact strength. The composites containing ZnO content greater than 2.0 wt% show increased Young's Modulus. The tensile strength and stress at break decrease with increasing ZnO content. This may be due to the compatibility between ZnO and POM.  相似文献   

7.
CaCO3/PEEK复合体系的力学行为和热行为研究   总被引:7,自引:0,他引:7  
以聚醚醚酮和碳酸钙复合体系为研究对象,考察了偶联剂和填料添加量对复合材料力学行为和热行为的影响.发现磺化聚醚醚酮作为偶联剂能有效地改善材料的力学性能,提高基体树脂的玻璃化转变温度,降低基体树脂的熔点,有助于改善聚醚醚酮的加工条件  相似文献   

8.
The improvement of mechanical properties and toughness of nanoparticles for epoxy composites was mostly dependent on the disperse state of nanoparticles in epoxy matrices. When the content of nanoparticles was higher than a threshold value, it was easy to aggregate and then affect the improvement effect. Pickering emulsion was prepared using SiO2 nanoparticles as emulsifier and functional monomer as oil phase. The influence of Pickering emulsion on the curing process was investigated. The effect of Pickering emulsion on the mechanical properties, toughness, and glass transition temperature (Tg) was studied. Impact and tensile fracture surface were observed by scanning electron microscopy (SEM). Results from differential scanning calorimeter (DSC), tensile, impact, and fracture toughness tests are provided. The results indicated that the introduction of Pickering emulsion can eliminate the residual stress and accelerate curing reaction. Epoxy composites were capable of increasing tensile strength by up to 29.9%, impact strength of three‐fold, fracture toughness of 35%, and Tg of 20.7°C in comparison with the reference sample. SEM images showed that SiO2 nanoparticles exhibit a good dispersion in epoxy matrix. The increases in mechanical properties, toughness, and Tg of epoxy composites were attributed to the “Second Phase Toughness” mechanism.  相似文献   

9.
Polyamide 66 (PA66) composites filled with clay and carbon fiber (CF) were prepared by twin‐screw extruder in order to study the influence of nanoparticle reinforcing effect on the mechanical behavior of the PA66 composites (CF/PA66). The mechanical property tests of the composites with and without clay were performed, and the fracture surface morphology was analyzed. The results show that the fracture surface area of the clay‐filled CF/PA66 composite was far smoother than that of the CF/PA66 composite, and there formed a tense interface on the CF surface after the addition of clay. The tensile and flexural strength of CF/PA66 composites with clay was improved. The impact strength decreased because of the high interfacial adhesion. In conclusion, the addition of clay favored the improvement of the higher interface strength and so had good effect on improving the tensile and flexural properties of the composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
The main objective of this article is to introduce a new natural fiber as a reinforcement in polymers for making composites for lightweight applications. The extraction of golden cane (Chrysalidocarpus lutescens) fiber and the mechanical properties of the fiber-reinforced polyester composites are described. The composites were formulated up to a maximum volume fraction of 0.43, resulting in a mean tensile strength and modulus of 2.13 and 2.26 times and mean flexural strength and modulus of 1.94 and 2.89 times greater than those of plain polyester, respectively, at a higher volume fraction of 0.43. The work of fracture in impact is measured to be 358 J/m. The results of this study indicate that golden cane fibers have potential as reinforcing fillers in plastics in order to produce inexpensive materials with high toughness.  相似文献   

11.
Natural fiber-reinforced nanocomposites were prepared by incorporating wild cane grass fiber and organically modified montmorillonite (MMT) nanoclay into polyester resin. The composites were formulated up to a maximum volume of fiber of approximately 40% and their mechanical properties were investigated. The mean tensile strength and tensile modulus of nanoclay-filled wild cane grass fiber composites are 6.3% and 18.3% greater than those of wild cane grass fiber composites, respectively, without addition of nanoclay at maximum percentage volume of fiber. The mean flexural strength of nanocomposites at maximum percentage volume of fiber was increased to a maximum of 221 Mpa and flexural modulus to 4.2 Gpa. The mean impact strength of nanoclay-filled wild cane grass fiber composites was increased to 376.7 J/m at maximum percentage volume of fiber. The weight loss of nanoclay-filled wild cane grass fiber/polyester composites was 30% and 22% less than that of composites without nanoclay at maximum percentage volume of fiber. The results indicated that the use of nanoclay showed significant improvement in all the mechanical properties of wild cane grass fiber-reinforced composites.  相似文献   

12.
A research has been carried out to investigate the mechanical properties of composites made by hybridizing sugar palm fibre (Arenga pinnata) with glass fibre into an unsaturated polyester matrix. Hybrid composites of glass/sugar palm fibre were fabricated in different weight ratios of strand mat glass fibres: sugar palm fibres 4:0, 4:1, 4:2, 4:3, 4:4, and 0:4. The hybrid effects of glass and sugar palm fibre on tensile, flexural and impact properties of the composites were evaluated according to ASTM D5083, ASTM D790 and ASTM D256 respectively. Results have been established that properties of hybrid glass/sugar palm composites such as tensile strength, tensile modulus, elongation at break, toughness, flexural strength, flexural modulus and impact strength are a function of fibre content. The failure mechanism and the adhesion between fibres/matrix were studied by observing the scanning electron micrographs of impact fracture samples. In general, the incorporation of both fibres into unsaturated polyester matrix shows a regular trend of increase in the mechanical properties.  相似文献   

13.
Hybrid composites consisting of isotactic poly(propylene) (PP), sisal fiber (SF), and maleic anhydride grafted styrene‐(ethylene‐co‐butylene)‐styrene copolymer (MA‐SEBS) were prepared by melt compounding, followed by injection molding. The melt‐compounding torque behavior, thermal properties, morphology, crystal structure, and mechanical behavior of the PP/MA‐SEBS/SF composites were systematically investigated. The torque test, thermogravimetric analysis, differential scanning calorimetric, and scanning electron microscopic results all indicated that MA‐SEBS was an effective compatibilizer for the PP/SF composites, and there was a synergism between MA‐SEBS and PP/SF in the thermal stability of the PP/MA‐SEBS/SF composites. Wide‐angle X‐ray diffraction analysis indicated that the α form and β form of the PP crystals coexisted in the PP/MA‐SEBS/SF composites. With the incorporation of MA‐SEBS, the relative amount of β‐form PP crystals decreased significantly. Mechanical tests showed that the tensile strength and impact toughness of the PP/SF composites were generally improved by the incorporation of MA‐SEBS. The instrumented drop‐weight dart‐impact test was also used to examine the impact‐fracture behavior of these composites. The results revealed that the maximum impact force (Fmax), impact‐fracture energy (ET), total impact duration (tr), crack‐initiation time (tinit), and crack‐propagation time (tprop) of the composites all tended to increase with an increasing MA‐SEBS content. From these results, the incorporation of MA‐SEBS into PP/SF composites can retard both the crack initiation and propagation phases of the impact‐fracture process. These prolonged the crack initiation and propagation time and increased the energy consumption during impact fracture, thereby leading to toughening of PP/MA‐SEBS/SF composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1214–1222, 2002  相似文献   

14.
Gao  Xia  Zhao  Tianbo  Luo  Guan  Zheng  Baohui  Huang  Hui  Chai  Yuqiao  Ma  Rui  Han  Xue 《Journal of Thermal Analysis and Calorimetry》2019,135(4):2125-2136

Leakage and incompatibility of paraffin wax (PW) in hydroxyl-terminated polybutadiene (HTPB) binders is a major obstacle to its application in polymer-bonded explosives (PBX). In order to solve this issue, we designed a microencapsulated PW (MePW)/PW/HTPB composite in this paper. Melamine–formaldehyde-shelled MePW (MF MePW)/PW/HTPB composites with different contents of MePW and PW were prepared by cast molding method. The chemical composition, crystallinity and microstructure of MePW/PW/HTPB composites were analyzed with Fourier transformed infrared spectroscopy, X-ray diffraction and scanning electron microscope, respectively. The results showed that PW and MF MePW have been uniformly dispersed in HTPB without any chemical interaction. Moreover, differential scanning calorimeter analysis, thermal gravimetric analyzer, thermal cycling test, leaking test, tensile and compressive test were used to investigate the thermal and mechanical properties of these composites. The composites have high latent heat and good thermal reliability. The thermal stability, tensile and compressive strength of MePW/PW/HTPB composites were dramatically increased with the increasing mass fraction of MePW. The introduction of MePW can obviously prevent the leakage of PW in both HTPB binders and PBX. Consequently, it is anticipated that MePW can be used in the next-generation of paraffin-based high-temperature PBX systems.

  相似文献   

15.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organically modified clay (organoclay) toughened with maleated styrene-ethylene-butylene-styrene (SEBS-g-MA) were prepared by melt compounding using co-rotating twin-screw extruder followed by injection molding. X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of the nanocomposites. The mechanical properties of the nanocomposites were determined by tensile, flexural, and notched Izod impact tests. The single edge notch three point bending test was used to evaluate the fracture toughness of SEBS-g-MA toughened PA6/PP nanocomposites. Thermal properties were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). XRD and TEM results indicated the formation of the exfoliated structure for the PA6/PP/organoclay nanocomposites with and without SEBS-g-MA. With the exception of stiffness and strength, the addition of SEBS-g-MA into the PA6/PP/organoclay nanocomposites increased ductility, impact strength and fracture toughness. The elongation at break and fracture toughness of PA6/PP blends and nanocomposites were increased with increasing the testing speed, whereas tensile strength was decreased. The increase in ductility and fracture toughness at high testing speed could be attributed to the thermal blunting mechanism in front of crack tip. DSC results revealed that the presence of SEBS-g-MA had negligible effect on the melting and crystallization behavior of the PA6/PP/organoclay nanocomposites. TGA results showed that the incorporation of SEBS-g-MA increased the thermal stability of the nanocomposite.  相似文献   

16.
In this work, elastomer‐toughened polypropylene (PP)/magnesium hydroxide (MH) composites with ethylene–octene copolymer (POE) were prepared in a twin‐screw extruder and then injection‐molded. The structure, mechanical properties, phase morphology, and rheological behaviors of PP/POE/MH ternary composites were studied. The mechanical properties and fracture behaviors of PP/POE/MH ternary composites are strongly influenced by the incorporation of POE copolymer. The addition of POE causes a significant improvement in the impact strength of the composites, from 3.6 kJ/m2 in untoughened composites to 47.4 kJ/m2 in PP composites containing 30 phr POE. This indicates that POE is very effective in converting brittle PP composites into tough composites. Conversely, the tensile strength and the Young's modulus of the composites decrease with respect to the PP composites, as the weight fraction of POE is increased to 40 phr. Scanning electron microscopy (SEM) study shows a two‐phase morphology where POE, as droplets, is dispersed finely and uniformly in the PP matrix. The rheological behaviors show that the interfacial interaction in the composites is enhanced with increase in POE content. Interparticle interactions give rise to the formation of interparticle network. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
研究了两种马来酸酐接枝聚丙烯(PP-g-MAH)在不同含量时对聚丙烯(PP)/滑石粉复合材料的力学性能、雾化性能和线性膨胀系数的影响.结果表明,接枝物的加入能提高复合材料的拉伸性能、冲击性能和弯曲性能,但随着含量的增加拉伸强度、冲击强度和弯曲强度及弯曲模量有所降低.在含量相同时,接枝物1对冷凝组份的影响更小.复合材料的线性膨胀系数随接枝物含量的增加先减小后增加.  相似文献   

18.
《先进技术聚合物》2018,29(4):1287-1293
The surface treatment of ultra‐high molecular weight polyethylene fiber using potassium permanganate and the mechanical properties of its epoxy composites were studied. After treatment, many changes were happened in the fiber surface: more O‐containing groups (―OH, ―C═O, and ―C―O groups), drastically decreased contact angles with water and ethylene glycol, slightly increased melting point and crystallinity, and formed cracks. Different contents (0.1–0.5 wt%) ultra‐high molecular weight polyethylene fibers/epoxy composites were prepared. The results indicated that the surface treatment decreased the tensile strength of epoxy composites, but increased the bending strength. When the fiber content was 0.3 wt%, the above properties reached the maximum. At the same fiber content, the interlaminar shear strength of the composites was increased by 26.6% up to the as‐received fiber composites. Dynamic mechanical analysis of the composites suggested the storage modulus and tanδ were decreased due to the surface treatment. Fractured surface analysis confirmed that the potassium permanganate treatment was effective in improving the interface interaction.  相似文献   

19.
Ternary blends of PLA/PBS/CSW with different weight fractions were prepared using a vane extruder. The mechanical properties, morphology, crystallization behavior and thermal stability of the blends were investigated. For the PLA/CSW blend, the tensile strength decreased, the flexural strength and modulus increased compared with pure PLA. For PBS, the addition of CSW had little influence on the mechanical properties. For the ternary blends PLA/PBS/CSW, the tensile strength, flexural strength and modulus decreased compared with pure PLA, while the elongation at break and the impact strength increased significantly. The brittle-ductile transition of the blends took place when the PBS weight fraction reaching 30 wt%. As a soft component in the blends, PBS was beneficial to improve the tensile ductility and the toughness of PLA. SEM measurements reveal that PLA/PBS/CSW blends were immiscible. When the weight fraction of PBS was 50 wt%, significant phase separation was observed, and CSW had preferential location in the PBS phase of the blend. DSC measurement and POM observation reveal that CSW had a heterogeneous nucleation effect on PLA and PBS matrix. The addition of PBS improved the crystallization of PLA and the thermal resistance of the PLA/PBS/CSW blends significantly.  相似文献   

20.
聚氯乙烯/纳米水滑石复合材料的形态与力学性能   总被引:5,自引:0,他引:5  
对由原位悬浮聚合制备的聚氯乙烯(PVC)纳米水滑石复合树脂加工得到的纳米复合材料的形态和力学性能进行了研究,并与直接熔融加工得到的PVC纳米水滑石复合材料进行比较.发现由前一方法得到的PVC纳米水滑石复合材料中纳米水滑石的分散性明显优于由后一方法得到的PVC纳米水滑石复合材料,水滑石以初级粒子形式存在,分散良好,无明显团聚体;与之对应,由前一方法得到的PVC纳米水滑石复合材料的力学性能也明显优于由后一方法得到的PVC纳米水滑石复合材料,当纳米水滑石含量小于5wt%时,复合材料的杨氏摸量、拉伸强度和缺口冲击强度均随水滑石含量增加而增大;纳米水滑石的引入可显著提高复合树脂的热稳定性;PVC纳米水滑石复合材料的储能和损耗模量略大于纯PVC材料,而损耗因子和玻璃化温度变化不大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号