首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
主要用飞秒抽运-探测技术观察了紫细菌Rb. sphaeroides 601外周捕光天线LH2中细菌叶绿素(BChl)之间的能量传递过程. 在783 nm的激光激发B800情况下, 在B800到B850的能量传递之前, 存在一个约0.35 ps的分子内能量重新分布过程; 通过调节激发波长, 清楚地观察到激发态BChl分子的动力学演变过程. 结果表明基态漂白和激发态吸收存在明显的竞争, 同时在818 nm处出现一个鞍点, 说明在B800的激发态和B850的上激子态存在快速、高效的能量传递; B850分子上激子态的激发能将通过内转换向次最低激发态快速弛豫, 并导致最低激发态布局和分子构象变化.  相似文献   

2.
Thermochromatium (Tch.) tepidum是一种中等嗜热的紫色光合细菌, 最佳生长温度为48-50 ℃; 其捕光天线复合物2 (LH2)含有非均一性脱辅基蛋白和类胡萝卜素(Car), 且高分辨率晶体结构未知. 我们通过超快光谱研究了分别采用去垢剂n-dodecyl-β-D-maltoside (DDM)和lauryldimethylamine oxide (LDAO)制备的LH2的激发态动力学, 观测到由细菌叶绿素(BChl)的Qy态介导的B800-to-B850单重态能量传递过程(时间尺度~1.2 ps, 用DDM制备的LH2), 以及由类胡萝卜素S2态介导的Car-to-Car和Car-to-BChl 单重态能量传递过程(~100 fs). 结果表明C=C共轭双键数目(NC=C)为11和12的两类Car共处于同一LH2复合物中; 相对于源自其它菌种、构成组分相对简单的LH2, Tch. tepidum的LH2中B800-B850的相对取向有较大差异. 本工作发现LH2中低含量类胡萝卜素组分anhydrorhodovibrin (NC=C=12)起着高效“能量陷阱”的作用, 可能是一种重要的光保护机制; 基于类胡萝卜素的超快谱带位移现象提出(OH-)spirilloxanthin(NC=C=13)距BChl分子可能比其它类胡萝卜素更近. 这些研究结果有助于进一步理解苛刻自然条件下生长的Tch. tepidum的捕光和光保护机制.  相似文献   

3.
紫色光合细菌Rhodopseudomonas (Rps.) palustris的外周捕光天线LH2含有多种类胡萝卜素分子(Car), 研究多种共存的Car的生理学功能具有重要意义. 文中采用纳秒时间分辨吸收光谱手段分别在生理学温度(室温)和低温(77 K)下研究了Car三重激发态(3Car*)的动力学行为. 在用纳秒光脉冲选择性地激发Car后记录到其宽带、非对称的三重态吸收(Tn←T1)光谱, 这一光谱特征是由含不同C = C共轭双键数目(N)的Car所致. 不同Car对Tn←T1吸收谱的贡献在室温下严重交叠, 在低温下却可以清晰辨别. 在室温下Tn←T1吸收峰的短波侧随探测光延时的增加而变窄, 历经约1 μs达到光谱平衡, 但在低温下同样的光谱动力学却并不显著. 上述光谱动力学变化被解释为不同Car间的激发态平衡过程. 对室温下的时间分辨光谱的全局分析(Global Analysis)分离出峰值波长在545和565 nm的两个主要光谱组分, 分别被指认为N = 11和13的Car的Tn←T1吸收光谱. 短波长组分的寿命为0.72 μs(空气饱和样品)和1.36 μs(生物除氧样品), 而对应的长波长组分的寿命为2.12和3.75 μs. 这种N小的Car寿命短的反常行为表明不同共轭链长度的Car间可能存在着三重激发态能量传递, 由此推测Rps. palustris的LH2中单个α, β-亚基内存在两种不同共轭长度的Car.  相似文献   

4.
张晓  陈德展 《化学学报》2004,62(8):762-768
利用密度泛函B3LYP/6-31G*方法对茈醌类光敏剂竹红菌甲素hypocrellin A(HA)及其模型化合物的结构性质和分子内氢传递(IHT)过程进行了系统的计算研究,比较了各侧链对分子结构和IHT过程的影响.利用CIS/6-31G*方法对HA的活性中心苝醌(PQ)及与其结构类似的一系列化合物激发态的IHT过程进行了研究.得到的主要结论包括:(1)常温下,处于基态的HA分子能够进行快速的分子内氢传递.(2)HA的几种模型化合物在基态时的IHT势垒、分子内电荷分布与HA差别很小,这说明侧链对IHT过程的影响不大.(3)HA模型化合物的IHT势垒与氧氢键键长变化和氢键键长变化呈良好的线性关系.(4)IHT反应中伴随着一个电荷分离过程,在氢传递过程中占主导地位的是静电相互作用,这说明此IHT过程本质上是质子转移过程.(5)共轭结构对该类分子的激发态IHT过程具有重要影响,总的趋势是对小共轭体系,单重激发态和三重激发态IHT反应的势能曲线分离,随着分子共轭结构的增大,两个激发态势能曲线逐渐接近,发生交叉的可能性以及交叉的程度也随之增大,即从单重态到三重态发生系间窜越的可能性也随之增大.由于分子内氢传递导致单重激发态和三重激发态势能曲线交叉,致使发生系间窜越,使体系三重态量子效率显著提高,从而提高了茈醌类光敏剂的光敏活性.这说明IHT过程对该类分子保持其光敏活性具有重要的意义.  相似文献   

5.
■二唑基四极分子(2,5-bis(4-(10H-phenoxazin-10-yl)phenyl-1,3,4-oxadiazole,2PXZ-OXD)具有典型的电子给体(donor)-受体(acceptor)-给体(donor)(D-A-D)的结构特点,表现出优良的延迟荧光特性.我们利用稳态、瞬态光谱方法研究了该分子在不同极性溶剂中的光物理特性,发现随着溶剂极性的增加,Stokes位移明显增加,证明了光激发下2PXZ-OXD分子产生了强偶极性的电荷转移态.进一步的量化计算结果发现,单重激发态的偶极矩显著大于三重激发态的偶极矩,溶剂极性对单重激发态的影响更大.溶剂极性的增加,打破了四极分子的对称性,促进了单重态能级的下降,从而调控单-三重态间能级差,导致延迟荧光特性的改变.溶剂极性在对单重态与三重态的能级差调控的同时,也会对2PXZ-OXD分子的发射振子强度有影响,强极性造成的显著非辐射弛豫过程会明显降低发光性能.  相似文献   

6.
李丹  薛佳丹  郑旭明 《物理化学学报》2014,30(12):2216-2223
通过共振拉曼光谱实验和量子化学计算的方法研究了4-硝基咪唑(4NI)A-带激发态衰变动力学.对4NI的振动光谱、紫外电子吸收光谱、荧光光谱和共振拉曼光谱进行了指认.在全活化空间自洽场法(CASSCF)/6-31G(d)计算水平下获得了单重激发态S1(nOπ*)和S2(ππ*)和势能面交叉点S1(nOπ*)/S2(ππ*)的优化几何结构和能量,分析了A-带共振拉曼光谱的强度模式特征,获得了短时结构动力学,并结合全活化空间自洽场法(CASSCF)理论计算结果确定了4NI在S2(ππ*)态衰变通道主要是S2,FC→S2,min(ππ*)→S0辐射弛豫.  相似文献   

7.
设计构建了以羧脒盐桥联接的萘和蒽超分子组装体系,NA-(脒基-羧基)-An以及相应的模型体系.稳态和时间分辨荧光光谱研究表明,置于羧脒盐桥两端的萘和蒽基团之间发生了从萘到蒽的单重态能量传递,NA-(脒-羧)-An超分子体系中单重态能量传递效率和速率常数分别大于0.99和9.9×109s-1.推测羧脒盐桥介导了体系中的单重态能量传递过程,单重态能量传递‘通过键’以电子交换机制进行.  相似文献   

8.
采用密度泛函的B3LYP和单激发组态相互作用(CIS)方法分别对基态和第一、第二单重激发态(S1和S2)结构进行优化,均采用6-31G(d)基组.在优化的基态和第一单重激发态的结构基础上,用含时密度泛函理论(TD-DFT),成功模拟了7-甲氧基香豆素-3-甲酰二乙醇胺的吸收光谱和荧光发射光谱,并用极化连续模型考虑了溶剂的影响.利用前线轨道、电荷密度差(CDD)和态密度(DOS)图分析了电子跃迁的特性.计算结果与实验结果吻合得很好.该量子计算方法对此类化合物的定性和定量研究是有效的.  相似文献   

9.
锌卟啉的轴向配位对其激发态光物理性质的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
采用稳态吸收光谱、荧光光谱及皮秒时间分辨荧光光谱技术研究了轴向配体4-N,N-二甲氨基吡啶(DMAP)对5,10,15,20-四(对甲氧基苯基)锌卟啉(Zn(p-OCH3)TPP)的第一单重激发态(S1态)和第二单重激发态(S2态)的荧光特性的影响, 观测到源于S1态高振动能级的热荧光, 并发现轴向配体的引入导致卟啉分子: (1) S1态热荧光寿命缩短, 相对含量增加; (2) S1态荧光寿命缩短. 对轴向配体引起的上述电子激发态性质变化的机理进行了探讨.  相似文献   

10.
单重态氧及其近年来在有机合成中的应用   总被引:2,自引:0,他引:2  
现在不仅有机化学家,而且生物化学家和生物学家对单重态氧化学都感到兴趣。因为单重态氧与有机物的反应能力很强,而且还与有机材料受光和氧的破坏作用、以及动植物的生命过程等~([1,2])有一定联系. 单重态分子氧氧原子在组成氧分子时,按分子轨道理论的解释,应该有一对电子填入能量相同的两个简并反键轨道π~*2p_v和π~*2p_z上。根据洪特规则,这两个电子尽可能分占不同轨道,且自旋平行。氧分子的这种电子状态,即是三重态。由于具有g对称性,所以是~3∑_g态。在激发态时,氧分子的两个π~*电子可同时占据一个π~*轨道,其自旋相反,这便是氧分子的第一激发单重态,它也具有g对称性,故电子态是~1△_g。如果两个电子分占不同的π~*轨道,且自旋相反,这是氧分子的第二激发单重态(~1∑_g)。激发态氧分子虽有各种单重态,但一般用的单重态氧为其最低激发态,即~1△_g状态(~1O_2)~([2,3])。  相似文献   

11.
Four carotenoids, 3,4,7,8-tetrahydrospheroidene, 3,4,5,6-tetrahydrospheroidene, 3,4-dihydrospheroidene and spheroidene, have been incorporated into the B850 light-harvesting complex of the carotenoidless mutant, photosynthetic bacterium, Rhodobacter sphaeroides R-26.1. The extent of π-electron conjugation in these molecules increases from 7 to 10 carbon-carbon double bonds. Carotenoid-to-bacteriochlorophyll singlet state energy transfer efficiencies were measured using steady-state fluorescence excitation spectroscopy to be 54 ± 2%, 66 ± 4%, 71 ± 6% and 56 ± 3% for the carotenoid series. These results are discussed with respect to the position of the energy levels and the magnitude of spectral overlap between the S, (2′AJ state emission from the isolated carotenoids and the bacteriochlorophyll absorption of the native complex. These studies provide a systematic approach to exploring the effect of excited state energies, spectral overlap and excited state lifetimes on the efficiencies of carotenoid-to-bacteriochlorophyll singlet energy transfer in photosynthetic systems.  相似文献   

12.
The light-driven reactions of photosynthesis are the means by which nature converts solar energy into electrochemical potential, which is eventually stored as chemical energy. These initial reactions occur in two closely coupled pigment systems, the network of so-called antenna system in which the excitation en-ergy is absorbed by the pigments and efficiently transported to another system, the photosynthetic reac-tion center where the energy is converted into a stable trans-membrane charge sepa…  相似文献   

13.
The energy relaxation and kinetic evolution of transient spectra of bacteriochlorophylls (BChls) in light-harvesting complex LH2 from Rb. sphaeroides 601 were investigated using femtosecond pump-probe technique. Upon 783 nm excitation, the energy at B800 BChls experiences an intramolecular redistribution with 0.35 ps time constant before transferring to B850 BChls. With tuning the excitation wavelength, the dynamical evolution of excited BChls was clearly observed, which indicates an obvious competition between the ground state bleaching and excited state absorption (ESA) of BChls involved and an isosbestic point near 818 nm, and also demonstrates that from the lower electronic excited state of B800 BChls to the higher excitonic state of B850 BChls is an efficient routine for energy transfer. The excitation energy in higher excitonic states of B850 BChls relaxes rapidly to the next lowest excitonic state by interconversion, delocalization to adjacent molecular, populating the lowest excitonic state and the change of molecular conformation.  相似文献   

14.
The role of the B800 in energy and electron transfer in LH2 complexes has been studied using femtosecond time-resolved transient absorption spectroscopy. The B800 site was perturbed by application of lithium dodecyl sulfate (LDS), and comparison of treated and untreated LH2 complexes from Rhodobacter sphaeroides incorporating carotenoids neurosporene, spheroidene, and spheroidenone was used to explore the role of B800 in carotenoid to bacteriochlorophyll-a (BChla) energy transfer and carotenoid radical formation. Efficiencies of the S1-mediated energy transfer in the LDS-treated complexes were 86, 61, and 57% in the LH2 complexes containing neurosporene, spheroidene, and spheroidenone, respectively. Analysis of the carotenoid S1 lifetimes in solution, LDS-treated, and untreated LH2 complexes allowed determination of B800/B850 branching ratio in the S1-mediated energy transfer. It is shown that B800 is a major acceptor, as approximately 60% of the energy from the carotenoid S1 state is accepted by B800. This value is nearly independent of conjugation length of the carotenoid. In addition to its role in energy transfer, the B800 BChla is the only electron acceptor in the event of charge separation between carotenoid and BChla in LH2 complexes, which is demonstrated by prevention of carotenoid radical formation in the LDS-treated LH2 complexes. In the untreated complexes containing neurosporene and spheroidene, the carotenoid radical is formed with a time constant of 300-400 fs. Application of different excitation wavelengths and intensity dependence of the carotenoid radical formation showed that the carotenoid radical can be formed only after excitation of the S2 state of carotenoid, although the S2 state itself is not a precursor of the charge-separated state. Instead, either a hot S1 state or a charge-transfer state lying between S2 and S1 states of the carotenoid are discussed as potential precursors of the charge-separated state.  相似文献   

15.
We present results from transient absorption spectroscopy on a series of artificial light-harvesting dyads made up of a zinc phthalocyanine (Pc) covalently linked to carotenoids with 9, 10, or 11 conjugated carbon-carbon double bonds, referred to as dyads 1, 2, and 3, respectively. We assessed the energy transfer and excited-state deactivation pathways following excitation of the strongly allowed carotenoid S2 state as a function of the conjugation length. The S2 state rapidly relaxes to the S* and S1 states. In all systems we detected a new pathway of energy deactivation within the carotenoid manifold in which the S* state acts as an intermediate state in the S2-->S1 internal conversion pathway on a sub-picosecond time scale. In dyad 3, a novel type of collective carotenoid-Pc electronic state is observed that may correspond to a carotenoid excited state(s)-Pc Q exciplex. The exciplex is only observed upon direct carotenoid excitation and is nonfluorescent. In dyad 1, two carotenoid singlet excited states, S2 and S1, contribute to singlet-singlet energy transfer to Pc, making the process very efficient (>90%) while for dyads 2 and 3 the S1 energy transfer channel is precluded and only S2 is capable of transferring energy to Pc. In the latter two systems, the lifetime of the first singlet excited state of Pc is dramatically shortened compared to the 9 double-bond dyad and model Pc, indicating that the carotenoid acts as a strong quencher of the phthalocyanine excited-state energy.  相似文献   

16.
The effect of singlet oxygen on light-harvesting (LH) complexes has been studied for a number of sulfur (S+) and nonsulfur (S) photosynthetic bacteria. The visible/near-IR absorption spectra of the standard LH2 complexes (B800-850) of Allochromatium (Alc.) vinosum (S+), Rhodobacter (Rba.) sphaeroides (S), Rhodoblastus (Rbl.) acidophilus (S), and Rhodopseudomonas (Rps.) palustris (S), two types LH2/LH3 (B800-850 and B800-830) of Thiorhodospira (T.) sibirica (S+), and an unusual LH2 complex (B800-827) of Marichromatium (Mch.) purpuratum (S+) or the LH1 complex from Rhodospirillum (Rsp.) rubrum (S) were measured in aqueous buffer suspensions in the presence of singlet oxygen generated by the illumination of the dye Rose Bengal (RB). The content of carotenoids in the samples was determined using HPLC analysis. The LH2 complex of Alc. vinosum and T. sibirica with a reduced content of carotenoids was obtained from cells grown in the presence of diphenylamine (DPA), and LH complexes were obtained from the carotenoidless mutant of Rba. sphaeroides R26.1 and Rps. rubrum G9. We found that LH2 complexes containing a complete set of carotenoids were quite resistant to the destructive action of singlet oxygen in the case of Rba. sphaeroides and Mch. purpuratum. Complexes of other bacteria were much less stable, which can be judged by a strong irreversible decrease in the bacteriochlorophyll (BChl) absorption bands (at 850 or 830 nm, respectively) for sulfur bacteria and absorption bands (at 850 and 800 nm) for nonsulfur bacteria. Simultaneously, we observe the appearance of the oxidized product 3-acetyl-chlorophyll (AcChl) absorbing near 700 nm. Moreover, a decrease in the amount of carotenoids enhanced the spectral stability to the action of singlet oxygen of the LH2 and LH3 complexes from sulfur bacteria and kept it at the same level as in the control samples for carotenoidless mutants of nonsulfur bacteria. These results are discussed in terms of the current hypothesis on the protective functions of carotenoids in bacterial photosynthesis. We suggest that the ability of carotenoids to quench singlet oxygen (well-established in vitro) is not well realized in photosynthetic bacteria. We compared the oxidation of BChl850 in LH2 complexes of sulfur bacteria under the action of singlet oxygen (in the presence of 50 μM RB) or blue light absorbed by carotenoids. These processes are very similar: {[BChl + (RB or carotenoid) + light] + O2} → AcChl. We speculate that carotenoids are capable of generating singlet oxygen when illuminated. The mechanism of this process is not yet clear.  相似文献   

17.
We present time-resolved fs two-photon pump-probe data measured with photosystem I (PS I) of Thermosynechococcus elongatus. Two-photon excitation (lambda(exc)/2 = 575 nm) in the spectral region of the optically forbidden first excited singlet state of the carotenoids, Car S1, gives rise to a 800 fs and a 9 ps decay component of the Car S1 --> S(n) excited-state absorption with an amplitude of about 47 +/- 16% and 53 +/- 10%, respectively. By measuring a solution of pure beta-carotene under exactly the same conditions, only a 9 ps decay component can be observed. Exciting PS I at exactly the same spectral region via one-photon excitation (lambda(exc) = 575 nm) also does not show any sub-ps component. We ascribe the observed constant of 800 fs to a portion of about 47 +/- 16% beta-carotene states that can potentially transfer their energy efficiently to chlorophyll pigments via the optically dark Car S1 state. We compared these data with conventional one-photon pump-probe data, exciting the optically allowed second excited state, Car S2. This comparison demonstrates that the fast dynamics of the optically forbidden state can hardly be unravelled via conventional one-photon excitation only because the corresponding Car S1 populations are too small after Car S2 --> Car S1 internal conversion. A direct comparison of the amplitudes of the Car S1 --> S(n) excited-state absorption of PS I and beta-carotene observed after Car S2 excitation allows determination of a quantum yield for the Car S1 formation in PS I of 44 +/- 5%. In conclusion, an overall Car S2 --> Chl energy-transfer efficiency of approximately 69 +/- 5% is observed at room temperature with 56 +/- 5% being transferred via Car S2 and probably very hot Car S1 states and 13 +/- 5% being transferred via hot and "cold" Car S1 states.  相似文献   

18.
Abstract— Polarized absorption, fluorescence and photoacoustic spectra of bacteriochlorophyll (BChl)-lipoprotein complexes from the purple bacterium Chromatium minutissimum oriented in stretched polyvinylalcohol films were measured at room temperature and 85 K. The preparations contain large amounts of the B800-820 antenna complexes. From polarized absorption spectra taken under various light beam incidence angles with respect to the film plane, conclusions concerning arrangement of pigment molecules in B800-820 complex are obtained. The transition moments of the BChl Qy band are not exactly parallel to the membrane plane. It seems that there are pools of differently oriented BChl chromophores absorbing in both 800 nm and 820 nm regions. Change in temperature strongly influences linear dichroism of carotenoids and BChl Qy bands. The reversible changes in absorption, linear dichroism and photoacoustic spectra caused by the variation in sample temperature suggest strongly the reversible twisting of carotenoid molecules, related probably to modification of the interactions between carotenoids and proteins. Various carotenoids exhibit different yield of thermal deactivation and this yield is also temperature dependent.  相似文献   

19.
Steady-state and ultrafast time-resolved optical spectroscopic investigations have been carried out at 293 and 10 K on LH2 pigment-protein complexes isolated from three different strains of photosynthetic bacteria: Rhodobacter (Rb.) sphaeroides G1C, Rb. sphaeroides 2.4.1 (anaerobically and aerobically grown), and Rps. acidophila 10050. The LH2 complexes obtained from these strains contain the carotenoids, neurosporene, spheroidene, spheroidenone, and rhodopin glucoside, respectively. These molecules have a systematically increasing number of pi-electron conjugated carbon-carbon double bonds. Steady-state absorption and fluorescence excitation experiments have revealed that the total efficiency of energy transfer from the carotenoids to bacteriochlorophyll is independent of temperature and nearly constant at approximately 90% for the LH2 complexes containing neurosporene, spheroidene, spheroidenone, but drops to approximately 53% for the complex containing rhodopin glucoside. Ultrafast transient absorption spectra in the near-infrared (NIR) region of the purified carotenoids in solution have revealed the energies of the S1 (2(1)Ag-)-->S2 (1(1)Bu+) excited-state transitions which, when subtracted from the energies of the S0 (1(1)Ag-)-->S2 (1(1)Bu+) transitions determined by steady-state absorption measurements, give precise values for the positions of the S1 (2(1)Ag-) states of the carotenoids. Global fitting of the ultrafast spectral and temporal data sets have revealed the dynamics of the pathways of de-excitation of the carotenoid excited states. The pathways include energy transfer to bacteriochlorophyll, population of the so-called S* state of the carotenoids, and formation of carotenoid radical cations (Car*+). The investigation has found that excitation energy transfer to bacteriochlorophyll is partitioned through the S1 (1(1)Ag-), S2 (1(1)Bu+), and S* states of the different carotenoids to varying degrees. This is understood through a consideration of the energies of the states and the spectral profiles of the molecules. A significant finding is that, due to the low S1 (2(1)Ag-) energy of rhodopin glucoside, energy transfer from this state to the bacteriochlorophylls is significantly less probable compared to the other complexes. This work resolves a long-standing question regarding the cause of the precipitous drop in energy transfer efficiency when the extent of pi-electron conjugation of the carotenoid is extended from ten to eleven conjugated carbon-carbon double bonds in LH2 complexes from purple photosynthetic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号