首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe an innovative multimodal system, which combines magnetic targeting of therapeutic agents with both magnetic resonance and fluorescence imaging into one system. This new magnetic nanoplatform consists of superparamagnetic γFe(2)O(3) nanoparticles, used clinically as an MRI contrast agent, conjugated to therapeutic molecules of the hydroxylmethylene bisphosphonate family (HMBPs): alendronate with an amine function as the terminal group. In vitro tests with breast cancer cells show that the γFe(2)O(3)@alendronate hybrid nanomaterial reduces cell viability and acts as a drug delivery system. We also investigated the anti-tumoural properties in vivo in nude mice xenografted with MDA-MB-231 tumours. We show that the presence of both γFe(2)O(3)@alendronate and a magnetic field significantly reduced the development of tumours. The amine functionalities can be used as precursor groups for the covalent coupling of peptides or monoclonal antibodies for specific biological targeting. The feasibility of this process was demonstrated by coupling rhodamine B, a fluorescence marker, to the γFe(2)O(3)@alendronate nanohybrid. The system showed fluorescent properties and high affinity for cells. Flow cytometry and fluorescence microscopy were used to study the kinetics of γFe(2)O(3)@alendronate uptake by cells. The magnetic and fluorescent nanoparticles are potential candidates for smart drug-delivery systems. Also, the superparamagnetic behaviour of such nanoparticles may be exploited as MRI contrast agents to improve therapeutic diagnostics.  相似文献   

2.
Knowing the adsorption behavior of target proteins on biofunctional magnetic nanoparticles is of great importance for the separation and purification of proteins. Adsorption behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin were investigated under different conditions of temperature, pH, ionic strength, and feed avidin concentration. Biofunctionalization of the non-functional nanoparticles was performed, coupled with iminobiotin. Characterization of the particles was carried out using transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR). The results showed the avidin adsorption behaviors were mainly dependent on affinity interaction between avidin and iminobiotin coupled with the nanoparticles, which exhibited temperature, pH, ionic strength, and feed avidin concentration sensitivity. Maximum avidin adsorption capacity was achieved as 225 mg avidin/g biofunctional nanoparticles. Results were well fitted to the Langmuir isotherm model with the feed avidin concentration of less than 45 μg/ml. Based on the experiments above, the biofunctional magnetic nanoparticles were used to separate avidin from treated egg-white solution containing large amounts of other proteins. The avidin was isolated in 92% yield with an optical purity of more than 98.5% according to the HPSEC data. The regeneration of these nanoparticles was also studied and almost 87.3% of avidin could still be recovered by these regenerated nanoparticles.  相似文献   

3.
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.  相似文献   

4.
Maghemite nanoparticles were synthesized by the coprecipitation method. Silica was coated to the maghemite nanoparticles and amino silane was modified to the surface of the silica magnetic nanoparticles. We use the biofunctional magnetic nanoparticles as a general agent to immobilize and separate the proteins in a broad range from different traditional Chinese medicines. The transmission electron microscopy results showed that the average diameter of the well-dispersed silica-coated nanoparticles was about 60 nm. The Fourier transform infrared spectrum indicated that the amino group had been successfully coupled to the surface of the maghemite particles. And the protein immobilization effect was characterized by the microplate reader. The characterization results proved that the synthesized functional magnetic nanoparticles could effectively immobilize and separate the proteins from traditional Chinese medicines.  相似文献   

5.
A new approach for the preparation of carbohydrate-coated magnetic nanoparticles is reported. In a first step, we show that the pH-driven assembly-disassembly natural process that occurs in apoferritin protein is effective for the encapsulation of maghemite nanoparticles of different sizes: 4 and 6 nm. In a second step, we demonstrate that the presence of functional amine groups in the outer shell of apoferritin allows functionalization with two carbohydrates, N-acetyl-D-glucosamine and d-mannose. High-resolution electron microscopy (HREM), high angle annular dark field scanning electron microscopy (HAADF-STEM), electron energy loss spectroscopy (EELS), X-ray diffraction (XRD), and SQUID technique have been used to characterize the magnetic samples, termed herein Apomaghemites. The in vivo magnetic resonance imaging (MRI) studies showed the efficiency in contrasting images for these samples; that is, the r(2) NMR relaxivities are comparable with Endorem (a commercial superparamagnetic MRI contrast agent). The r(2) relaxivity values as well as the pre-contrast and post-contrast T(2)*-weighted images suggested that our systems could be used as perspective superparamagnetic contrast agents for magnetic resonance imaging (MRI). The carbohydrate-functionalized Apomaghemite nanoparticles retained their recognition abilities, as demonstrated by the strong affinity with their corresponding carbohydrate-binding lectins.  相似文献   

6.
Here we report on the synthesis of ultrasmall gamma-Fe2O3 nanoparticles (5 nm) presenting a very narrow particle size distribution and an exceptionally high saturation magnetization. The synthesis has been carried out by decomposition of an iron organometallic precursor in an organic medium. The particles were subsequently stabilized in an aqueous solution at physiological pH, and the colloidal dispersions have been thoroughly characterized by complementary techniques. Particular attention has been given to the assessment of the mean particle size by transmission electron microscopy, X-ray diffraction, dynamic light scattering, magnetic, and relaxometric measurements. The good agreement found between the different techniques points to a very narrow particle size distribution. Regarding the magnetic properties, the particles are superparamagnetic at room temperature and present an unusually high saturation magnetization value. In addition, we describe the potential of these particles as specific positive contrast agents for magnetic resonance molecular imaging.  相似文献   

7.
Fluorescent nanoparticles (FNPs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. A novel kind of polymer fluorescent nanoparticles (PFNPs) was synthesized and its application for ovarian cancer imaging with fluorescence microscopy imaging technology was presented in this study. The PFNPs were synthesized with precipitation polymerization by using methacrylic acid (MAA) as monomer, trimethylolpropane trimethacrylate (Trim) as cross-linker, azobisisobutyronitrile (AIBN) as radical initiator and butyl rhodamine B (BTRB) as fluorescent dye. And the fluorescent dye was embedded into the three-dimensional network of the polymer when the polymer was produced. With this method the PFNPs can be prepared easily. And then the PFNPs were successfully modified with anti-Her-2 monoclonal antibody. The fluorescence probe based on anti-Her-2 monoclonal antibody conjugated PFNPs has been used to detect ovarian cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-Her-2 monoclonal antibody conjugated PFNPs can effectively recognize ovarian cancer cells and exhibit good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of ovarian cancer cells.  相似文献   

8.
To design peptide-targeted iron oxide as magnetic resonance imaging (MRI) contrast agents, amino-functionalized magnetic nanogels were prepared by using N-(2-aminoethyl) methacrylamide hydrochloride (AEM·HCl) as monomer via new photochemical approach. Their chemical structure and composition were characterized by Fourier transform infrared spectra (FTIR) and thermogravimetric analyses (TGA). The core–shell structure of magnetic nanogels was confirmed by high-resolution transmission electron microscopy (HRTEM). The good storage stability, high magnetic content (88.7%), high saturation magnetizations and superparamagnetic behavior suggested their great potentials as MRI contrast agents, which were confirmed by their measurements of r2 and coronal image of the crossing of mouse kidney.  相似文献   

9.
Magnetic nanoparticles for the manipulation of proteins and cells   总被引:1,自引:0,他引:1  
Pan Y  Du X  Zhao F  Xu B 《Chemical Society reviews》2012,41(7):2912-2942
In the rapidly developing areas of nanobiotechnology, magnetic nanoparticles (MNPs) are one type of the most well-established nanomaterials because of their biocompatibility and the potential applications as alternative contrast enhancing agents for magnetic resonance imaging (MRI). While the development of MNPs as alternative contrast agents for MRI application has moved quickly to testing in animal models and clinical trials, other applications of biofunctional MNPs have been explored extensively at the stage of qualitative or conceptual demonstration. In this critical review, we summarize the development of two straightforward applications of biofunctional MNPs--manipulating proteins and manipulating cells--in the last five years or so and hope to provide a relatively comprehensive assessment that may help the future developments. Specifically, we start with the examination of the strategy for the surface functionalization of MNPs because the applications of MNPs essentially depend on the molecular interactions between the functional molecules on the MNPs and the intended biological targets. Then, we discuss the use of MNPs for manipulating proteins since protein interactions are critical for biological functions. Afterwards, we evaluate the development of the use of MNPs to manipulate cells because the response of MNPs to a magnetic field offers a unique way to modulate cellular behavior in a non-contact or "remote" mode (i.e. the magnet exerts force on the cells without direct contact). Finally, we provide a perspective on the future directions and challenges in the development of MNPs for these two applications. By reviewing the examples of the design and applications of biofunctional MNPs, we hope that this article will provide a reference point for the future development of MNPs that address the present challenges and lead to new opportunities in nanomedicine and nanobiotechnology (137 references).  相似文献   

10.
Multifunctional nanoprobes with distinctive magnetic and fluorescent properties are highly useful in accurate and early cancer diagnosis. In this study, nanoparticles of Fe3O4 core with fluorescent SiO2 shell (MFS) are synthesized by a facile improved Stöber method. These nanoparticles owning a significant core-shell structure exhibit good dispersion, stable fluorescence, low cytotoxicity and excellent biocompatibility. TLS11a aptamer (Apt1), a specific membrane protein for human liver cancer cells which could be internalized into cells, is conjugated to the MFS nanoparticles through the formation of amide bond working as a target-specific moiety. The attached TLS11a aptamers on nanoparticles are very stable and can't be hydrolyzed by DNA hydrolytic enzyme in vivo. Both fluorescence and magnetic resonance imaging show significant uptake of aptamer conjugated nanoprobe by HepG2 cells compared to 4T1, SGC-7901 and MCF-7 cells. In addition, with the increasing concentration of the nanoprobe, T2-weighted MRI images of the as-treated HepG2 cells are significantly negatively enhanced, indicating that a high magnetic field gradient is generated by MFS-Apt1 which has been specifically captured by HepG2 cells. The relaxivity of nanoprobe is calculated to be 11.5 mg−1s−1. The MR imaging of tumor-bearing nude mouse is also confirmed. The proposed multifunctional nanoprobe with the size of sub-100 nm has the potential to provide real-time imaging in early liver cancer cell diagnosis.  相似文献   

11.
Human serum albumin magnetic microspheres containing 30% iron oxide particles were synthesized by a heat-stabilization process. The average diameter, the size distribution and the morphology were characterized by scanning electron microscopy, atomic force microscopy and transmission electron microscopy. The distribution of the iron oxide nanoparticles within the microspheres was confirmed by the contrast obtained in the morphology by backscattered electron imaging in scanning electron microscopy. Energy-dispersive X-ray spectroscopy showed the presence of iron in the microspheres. The cabbage like surface structure in some of the microspheres obtained in scanning electron microscopy can be better understood by atomic force microscopy. This peculiar surface structure in the microsphere may be due to the cross-linking in the protein molecule by heat. The amount of iron oxide in the microsphere was analyzed by atomic absorption spectroscopy. The magnetic properties of the particles were measured in a superconducting quantum interference device magnetometer. Received: 12 September 2000 Accepted: 5 February 2001  相似文献   

12.
Various magnetic nanoparticles have been extensively investigated as novel magnetic resonance imaging (MRI) contrast agents owing to their unique characteristics, including efficient contrast effects, biocompatibility, and versatile surface functionalization capability. Nanoparticles with high relaxivity are very desirable because they would increase the accuracy of MRI. Recent progress in nanotechnology enables fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. In this tutorial review, we discuss how MRI contrast effects can be improved by controlling the size, composition, doping, assembly, and surface properties of iron-oxide-based nanoparticles.  相似文献   

13.
A magnetic nanoparticle conjugate was developed that can potentially serve both as a contrast enhancement agent in magnetic resonance imaging and as a drug carrier in controlled drug delivery, targeted at cancer diagnostics and therapeutics. The conjugate is made of iron oxide nanoparticles covalently bound with methotrexate (MTX), a chemotherapeutic drug that can target many cancer cells whose surfaces are overexpressed by folate receptors. The nanoparticles were first surface-modified with (3-aminopropyl)trimethoxysilane to form a self-assembled monolayer and subsequently conjugated with MTX through amidation between the carboxylic acid end groups on MTX and the amine groups on the particle surface. Drug release experiments demonstrated that MTX was cleaved from the nanoparticles under low pH conditions mimicking the intracellular conditions in the lysosome. Cellular viability studies in human breast cancer cells (MCF-7) and human cervical cancer cells (HeLa) further demonstrated the effectiveness of such chemical cleavage of MTX inside the target cells through the action of intracellular enzymes. The intracellular trafficking model proposed was supported through nanoparticle uptake studies which demonstrated that cells expressing the human folate receptor internalized a higher level of nanoparticles than negative control cells.  相似文献   

14.
Magnetosomes are specialized organelles arranged in intracellular chains in magnetotactic bacteria. The superparamagnetic property of these magnetite crystals provides potential applications as contrast-enhancing agents for magnetic resonance imaging. In this study, we compared two different nanoparticles that are bacterial magnetosome and HSA-coated iron oxide nanoparticles for targeting breast cancer. Both magnetosomes and HSA-coated iron oxide nanoparticles were chemically conjugated to fluorescent-labeled anti-EGFR antibodies. Antibody-conjugated nanoparticles were able to bind the MDA-MB-231 cell line, as assessed by flow cytometry. To compare the cytotoxic effect of nanoparticles, MTT assay was used, and according to the results, HSA-coated iron oxide nanoparticles were less cytotoxic to breast cancer cells than magnetosomes. Magnetosomes were bound with higher rate to breast cancer cells than HSA-coated iron oxide nanoparticles. While 250 μg/ml of magnetosomes was bound 92 ± 0.2%, 250 μg/ml of HSA-coated iron oxide nanoparticles was bound with a rate of 65 ± 5%. In vivo efficiencies of these nanoparticles on breast cancer generated in nude mice were assessed by MRI imaging. Anti-EGFR-modified nanoparticles provide higher resolution images than unmodified nanoparticles. Also, magnetosome with anti-EGFR produced darker image of the tumor tissue in T2-weighted MRI than HSA-coated iron oxide nanoparticles with anti-EGFR. In vivo MR imaging in a mouse breast cancer model shows effective intratumoral distribution of both nanoparticles in the tumor tissue. However, magnetosome demonstrated higher distribution than HSA-coated iron oxide nanoparticles according to fluorescence microscopy evaluation. According to the results of in vitro and in vivo study results, magnetosomes are promising for targeting and therapy applications of the breast cancer cells.  相似文献   

15.
Superparamagnetic iron oxide nanoparticles, Fe3O4 and γ-Fe2O3, were produced by the so-called polyol process. In order to stabilize the particles in a physiological environment as potential contrast agents for Magnetic Resonance Imaging (MRI), the as-prepared particles were successfully transferred to an aqueous medium through ligand exchange chemistry of the adsorbed polyol species with the dopamine or the catechaldehyde. The ligands were able to participate in bidentate binding to the nanoparticles surface and to improve the stability of aqueous suspensions of the nanoparticles. Analysis was performed by various techniques including X-ray diffraction, transmission electron microscopy, infrared spectroscopy and thermal analysis. The results of magnetic measurements and initial in vitro magnetic resonance imaging essays are presented for the pre- and post-surface modified nanoparticles, respectively and discussed in relation with their structure and microstructure.  相似文献   

16.
We report the synthesis, characterization and relaxometric study of ferrofluids based on iron oxide, with potential for use as magnetic resonance imaging (MRI) contrast agents (CAs). The effect of different cost-effective, water-based surface modification approaches which can be easily scaled-up for the large scale synthesis of the ferrofluids has been investigated. Surface modification was achieved by silanization, and/or coating with non-toxic commercial dispersants (a lauric polysorbate and a block copolymer with pigment affinic groups, namely Tween 20 and Disperbyk 190) which were added after or during iron oxide nanoparticle synthesis. It was observed that all the materials synthesized functioned as negative contrast agents at physiological temperature and at frequencies covered by clinical imagers. The relaxometric properties of the magnetic nanoparticles were significantly improved after surface coating with stabilizers compared to the original iron oxide nanoparticles, with particular reference to the silica-coated magnetic nanoparticles. The results indicate that the optimization of the preparation of colloidal magnetic ferrofluids by surface modification is effective in the design of novel contrast agents for MRI by enabling better or more effective interaction between the coated iron oxide nanoparticles and protons present in their aqueous environment.  相似文献   

17.
He X  Ge J  Wang K  Tan W  Shi H  He C 《Talanta》2008,76(5):1199-1206
A fluorescent silica nanoparticles (FSiNPs) mediated double immunofluorescence staining technique has been proposed for MGC-803 gastric cancer cells imaging by confocal laser scanning microscopy. Anti-CEA antibody and anti-CK19 antibody which can be both bonded to MGC-803 gastric cancer cells were first conjugated to fluorescein isothiocyanate (FITC) doped fluorescent silica nanoparticles (FFSiNPs) and RuBPY doped fluorescent silica nanoparticles (RFSiNPs), respectively. The MGC-803 gastric cancer cells were incubated with the mixture of anti-CEA antibody-conjugated FFSiNPs and anti-CK19 antibody-conjugated RFSiNPs, and subsequently imaged using confocal laser scanning microscopy. With this method, the in vitro cultured MGC-803 gastric cancer cells lines were successfully doubled labeled and distinguished through antigen-antibody recognition, together with the green and red signal of FFSiNPs and RFSiNPs simultaneously obtained without crossreactivity by confocal laser scanning microscopy imaging. By comparison with the conventional double immunofluorescence staining using green-emitting and red-emitting dyes, the photostability of this proposed method for confocal laser scanning microscopy imaging has been greatly improved. Furthermore, the ex vivo imaging of primary MGC-803 gastric cancer cells samples came from the tumor tissues of mice bearing the MGC gastric cancer tumor xenografts by this method have also been explored. The results demonstrate that the method offers potential advantage of photostability for the confocal laser scanning microscopy imaging of MGC-803 gastric cancer cells, and is applicable to the imaging of primary MGC-803 gastric cancer cells from the tumor tissues.  相似文献   

18.
A new method is applied to prepare stable aqueous dispersion of magnetic iron oxide nanoparticles (MNPs) by biocompatible maleate polymers. Fe3O4 magnetic core–shell nanoparticles are obtained via forming an inclusion complex between carboxylic acid groups of maleated biocompatible polymers shell and Fe3O4 MNPs core surface. Maleate polymers are synthesized via esterification of poly(ethylene glycol), poly(vinyl alcohol) and starch with maleic anhydride (MA). The Fe3O4 magnetic core–shell nanoparticles are characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The obtained magnetic core–shell nanoparticles exhibit superparamagnetic property and reveal long‐term aqueous stability. This work represents a valid methodology to produce highly stable aqueous dispersion of Fe3O4 MNPs ferrofluids which can be expected to have great potential as contrast agent for magnetic resonance imaging. Furthermore, the shell composition of biocompatible maleate polymers with double bond of MA as crosslinker agent allows the polymerization with other monomers to design preferred drug delivery systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The unique properties of magnetic nanocrystals provide them with high potential as key probes and vectors in the next generation of biomedical applications. Although superparamagnetic iron oxide nanocrystals have been extensively studied as excellent magnetic resonance imaging (MRI) probes for various cell trafficking, gene expression, and cancer diagnosis, further development of in vivo MRI applications has been very limited. Here, we describe in vivo diagnosis of cancer, utilizing a well-defined magnetic nanocrystal probe system with multiple capabilities, such as small size, strong magnetism, high biocompatibility, and the possession of active functionality for desired receptors. Our magnetic nanocrystals are conjugated to a cancer-targeting antibody, Herceptin, and subsequent utilization of these conjugates as MRI probes has been successfully demonstrated for the monitoring of in vivo selective targeting events of human cancer cells implanted in live mice. Further conjugation of these nanocrystal probes with fluorescent dye-labeled antibodies enables both in vitro and ex vivo optical detection of cancer as well as in vivo MRI, which are potentially applicable for an advanced multimodal detection system. Our study finds that high performance in vivo MR diagnosis of cancer is achievable by utilizing improved and multifunctional material properties of iron oxide nanocrystal probes.  相似文献   

20.
18FDG conjugated magnetic iron oxide nanoparticles (MNPs) were synthesized as PET-MR hybrid imaging agent. Synthesized and characterized NPs were then applied to MCF-7 human breast cancer cells. 18FDG conjugated MNPs exhibited the cell incorporation ratio up to 30 %. As well as the characterization studies, apoptotic effects were observed depending on the cellular incorporations by the time. In conclusion, synthesized structures could have a potential as hybrid imaging agent in PET-MR imaging systems besides apoptotic effect on cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号