首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
多环芳烃气相色谱保留指数预测与估算   总被引:4,自引:0,他引:4  
按碳原子的键合特性对其进行分类,定义并计算了多环芳烃的分子距边矢量(VMDE),在此基础上对94种多环芳烃的气相色谱保留指数(RI)进行定量相关性研究,发现色谱保留指数与分子距边矢量之间存在良好的线性关系,RI.a b VMDE,n=94,相关系数r=0.9946,均方根RMS=8.15,同时,还进行了留一法交互检验结果为r=0.9928,RMS=9.35。表明了新分子距边矢量的合理性和有效性,可成功地用于多环芳烃气相色谱保留指数的估计与预测,有望在定量构效关系研究中获得广泛的运用。  相似文献   

2.
戴明 《分析试验室》2014,(9):1038-1042
建立了皂化提取-高效液相色谱荧光法测定油炸食品中苯并(a)芘、苯并(a)蒽、苯并(b)荧蒽、苯并(k)荧蒽及苯并[g,h,i]苝等5种多环芳烃的检测方法。油炸食品样品经皂化法处理,用正己烷提取,经浓缩处理后,用乙腈溶解,经高效液相色谱荧光定量检测。分离柱为Waters PAH C18柱(250 mm×4.6 mm i.d.,5μm);流动相为水-乙腈体系,梯度洗脱;流速1.0 mL/min,检测波长:苯并(a)蒽:λex=290 nm,λem=400 nm;其它4种目标物:λex=290 nm,λem=430 nm。不同基质样品中5种多环芳烃的定量限为0.1~0.6μg/kg。不同基质样品中5种多环芳烃的回收率为84.7%~106.3%,RSD为1.1%~3.2%(n=6),在相应浓度范围内呈良好的线性关系,线性相关系数均大于0.999。  相似文献   

3.
HPLC/FLD法测定环境样品和食品中的苯并[a]芘   总被引:2,自引:1,他引:1  
样品用环已烷提取,提取液经硅镁型吸附剂-氧化铝柱净化后上机分析。色谱条件:Ultimate—C18柱,梯度洗脱,A相为水-乙腈(体积比40:60),B相为乙腈,荧光检测器(λex=350nm,λem=430nm)。在此色谱条件下,比较了Waters—PAHs(多环芳烃)柱与Ultimate—C18柱分离16种PAHs(多环芳烃)的异同,发现苯并[a]芘在Ultimate—C18柱上与其他多环芳烃同样有良好的分离效果。仪器检出限为2pg,方法检出限:气体样品0.1ng/m^3;水样0.2ng/L;食用油0.2μg/kg;海洋生物、陆地生物、家禽等生物样品为0.02μg/kg。  相似文献   

4.
建立了气相色谱-质谱联用技术同时测定益智药材中16种多环芳烃(PAHs)的分析方法。最佳萃取条件为:取样品2.0 g,加入同位素内标后用无水乙醇、水混合溶解,以10 mL正己烷提取;提取液先过Florisil柱固相萃取,经氢氧化钾-乙醇溶液皂化,多环芳烃分子印迹柱固相萃取后,以5 mL二氯甲烷-正己烷(1∶1,体积比)进行洗脱;采用DB-EUPAH毛细管色谱柱进行分离,内标标准曲线法定量测定。在此条件下,16种多环芳烃的线性范围为1.0~200.0 μg/L(r2 ≥ 0.992 5);检出限(S/N=3)为0.3~1.0 μg/kg;在不同浓度(1、3、10 μg/kg)基质加标条件下,苯并[c]芴(BcFL)的加标回收率为65.4%~72.8%,日内相对标准偏差(RSD,n=6)为6.0%~7.4%,日间RSD(n=6)为8.5%;其他15种多环芳烃的加标回收率为89.3%~116%,日内RSD(n=6)为0.10%~6.1%,日间RSD(n=6)为1.2%~7.5%。该方法的前处理净化效果好、灵敏度高、准确度高,适用于益智药材中16种多环芳烃的定量检测。  相似文献   

5.
建立塑胶玩具中多环芳烃的气相色谱–质谱检测方法。样品用四氢呋喃溶剂超声提取60 min,提取液以乙腈净化。以DB–5MS色谱柱为分离柱,柱温程序:70℃保持1 min,以10℃/min升温至240℃,保持2 min,然后以8℃/min升温至280℃,保持5 min。16种多环芳烃的质量浓度在0.002~0.18 mg/L范围内线性良好,相关系数均大于0.991,定量限为0.12~0.20 mg/kg。测量结果的相对标准偏差为4.2%~7.4%(n=6),加标回收率为84.9%~116.7%。该方法简单、快速、准确、重现性好,能够满足目前对塑胶玩具中多环芳烃的检测要求。  相似文献   

6.
建立气相色谱–质谱法同时测定聚氨酯塑胶跑道中16种多环芳烃如萘、苊、二氢苊、芴、菲、蒽、荧蒽、苯并[b]荧蒽、芘、苯并[a]蒽、屈、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-cd]芘、1-甲基奈、2-甲基萘的检测方法。样品采用甲苯为提取剂,经超声提取和硅胶柱净化后,用气相色谱–质谱法测定16种多环芳烃残留量。16种多环芳烃的质量浓度在0.2~10.0 mg/kg范围内与色谱峰面积呈良好的线性,线性相关系数r20.998,检出限为5.0~60.0μg/kg。回收率为72.4%~101.6%,测定结果的相对标准偏差为0.9%~7.2%(n=6)。该方法准确度高、精密度好,适用于聚氨酯塑胶跑道中多环芳烃多残留检测。  相似文献   

7.
张小涛  张丽  阮艺斌  王维维  姬厚伟  万强  林福呈  刘剑 《色谱》2017,35(10):1105-1110
建立了气相色谱-串联质谱同时检测卷烟滤嘴中15种多环芳烃的方法。卷烟滤嘴用二氯甲烷振荡萃取后,经0.22μm有机相滤膜过滤,采用DB-5MS色谱柱(30 m×0.25 mm,0.25μm)进行分离,电子轰击源、正离子模式下以多反应监测模式进行检测,内标法进行定量。15种多环芳烃(苊烯、苊、芴、菲、蒽、荧蒽、芘、苯并[a]蒽、屈、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、二苯并[a,h]蒽、苯并[g,h,i]苝和茚并[1,2,3-c,d]芘)的线性关系良好,相关系数(R~2)为0.991 4~0.999 9。15种多环芳烃在低、中、高3个添加水平下的平均回收率为81.6%~111.2%;除了芴在低添加水平时相对标准偏差为19.2%外,其他相对标准偏差均小于16%。15种多环芳烃的检出限为0.02~0.24 ng/滤嘴,定量限为0.04~0.80 ng/滤嘴。方法前处理简便,具有快速、准确、灵敏度高及重复性好的优点,适用于卷烟滤嘴中多环芳烃的分析。  相似文献   

8.
气相色谱质谱法测定化妆品中9种多环芳烃   总被引:1,自引:0,他引:1  
建立了气相色谱质谱法测定化妆品中9种多环芳烃的分析方法。化妆品中的萘、苯并[a]蒽、、苯并[b]荧蒽、苯并[j]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、二苯并[a,h]蒽等9种多环芳烃用甲醇超声提取后,用环己烷液-液萃取后浓缩,经硅胶-中性氧化铝柱净化后,采用气相色谱-质谱测定。多环芳烃浓度在0.05~2 mg/L范围内,质量浓度与其峰面积呈良好的线性关系。在低、中、高3个添加水平下,9种多环芳烃化合物的平均回收率为81.6%~100.2%,相对标准偏差为1.3%~5.8%。方法可用于化妆品中多环芳烃的检测。  相似文献   

9.
提出了全二维气相色谱-氢火焰离子化检测器(GC×GC-FID)定性定量分析柴油中多环芳烃的方法。利用全二维气相色谱-飞行时间质谱法(GC×GC-TOF MS)确定柴油芳烃的4个族组成,分别为非芳烃、一环芳烃、二环芳烃和三环+芳烃,获得37种定性化合物;采用峰面积归一化法对多环芳烃进行定量。结果表明:柴油质控样中多环芳烃测定值的相对误差绝对值不大于5.0%;对柴油样品进行回收试验,回收率为95.7%~104%,测定值的相对标准偏差(n=6)为1.7%~4.3%。方法用于7种实际柴油样品分析,并与NB/SH/T 0806-2022进行比对,结果显示两种方法测定值的相对误差绝对值均不大于5.0%。  相似文献   

10.
提出了气相色谱-质谱法测定三七提取物中16种多环芳烃。样品用环己烷萃取,经凝胶渗透色谱净化处理后,采用HP-5MS色谱柱分离,电子轰击离子源-选择离子检测模式检测,外标法定量。16种多环芳烃的质量浓度在0.01~1.0mg·L-1范围内与其峰面积呈线性关系,方法的测定下限(10S/N)在0.3~9.5μg·kg-1之间。在0.01,0.05,0.1mg·kg-1添加水平下,16种多环芳烃的加标回收率在70.1%~111%之间,相对标准偏差(n=6)在3.0%~9.4%之间。  相似文献   

11.
在气相色谱分析萘、联苯、苊、芴、菲、蒽、荧蒽、芘、苯并(a)蒽、屈艹、苯并(a)芘和匹艹的研究过程中,以有效塔板数(neff)作为考察指标对新型色谱操作模式——程序升温升压操作条件进行了优化。通过对Kovats保留指数体系和Lee 保留指数体系在不同操作模式下的对比实验表明,在脉冲进样和程序升压等新型色谱操作条件下,Lee 保留指数体系仍能够满足对多环芳烃定性分析的要求, 前者则不能。  相似文献   

12.
李正华  程凡圣  夏之宁 《色谱》2011,29(1):63-69
应用分子电性距离矢量(MEDV)对114个多环芳香硫化合物(PASHs)进行结构表征,通过多元线性回归建立了PASHs的气相色谱保留指数与MEDV参数之间的定量结构-保留值关系模型;同时采用逐步回归分析进行变量筛选,继而以留一法交互检验对所得优化模型进行预测能力评价,所建立的模型的相关系数为0.9947,交互检验相关系数为0.9940,表明该优化模型具有良好的稳定性和预测能力。此外,通过将样本集按2:1分成校准集和测试集预测,统计分析结果显示所建的模型具有良好的相关性和稳定性。本文所建的定量结构-保留值关系(QSRR)模型为预测PASHs的气相色谱保留指数提供了一个便捷有效的新方法。  相似文献   

13.
Summary A composite chromatographic retention index system has been developed for identifying polycyclic aromatic hydrocarbons, polychlorinated biphenyls and polychlorinated pesticides. When retention indices and thermodynamic data of polycyclic aromatic hydrocarbons on 5% phenylmethylsiloxane stationary phase were compared with those obtained on polydimethylsiloxane a correlation was found between retention and electronic properties. Determination and quantitation of individual contaminants in water and sediment samples from Lake Mecoacán were achieved by capillary gas chromatography with flame ionization and electrocapture detection.  相似文献   

14.
Three columns were used for the gas chromatographic analysis of polycyclic aromatic hydrocarbons (PAHs) with relative molecular masses (Mr) up to 450. Two of the columns were commercially available, coated with a 50% methyltrifluoropropyl-substituted polysiloxane a 5% diphenyl-substituted methylpolysiloxane. The third column was laboratory made, coated with a biphenyl-substituted silarylene-siloxane copolymer. All three columns were utilized for the analysis of high-Mr PAHs as regards both thermal stability of the stationary phases, i.e., low bleeding rate, and chromatographic efficiency. The column coated with a trifluoropropyl-substituted stationary phase showed, however, a low separation efficiency, possibly owing to low solute stationary phase compatibility. The biphenyl-substituted stationary phase, on the other hand, showed a very high separation efficiency, but the retention of the PAHs was significantly higher on this column compared with the other two, leading to the demand for higher oven temperatures. Different retention mechanisms were observed on these columns, as shown by differences in the retention indices of the PAHs measured in a system using PAHs as retention index markers. A comparatively faster elution of non-planar PAHs was observed on the columns coated with the trifluoropropyl-substituted stationary phase and the biphenyl-substituted stationary phase compared with the column coated with the 5% diphenyl-substituted polymer. The usefulness of the columns for separations of high-Mr PAHs is demonstrated by gas chromatograms of carbon black extracts and a coal tar extract standard reference material.  相似文献   

15.
宋春侠  王威  刘泽龙  刘颖荣  蔡新恒 《色谱》2019,37(7):750-758
基于氯化钯配位交换色谱柱和氨基键合正相色谱柱,利用自动阀切换系统,构建了在线二维液相色谱分离平台。通过优化液相色谱分离条件,实现减压蜡油样品中含硫芳烃的在线富集与多环芳烃的环数分离。利用傅里叶变换离子回旋共振质谱对分离后的含硫芳烃和芳烃组分进行分子水平表征,得到更为详细的化合物类型与碳数分布信息。根据计算得到的平均结构信息,可以提供分离后组分典型的分子结构式,并对芳环结构和侧链位置进行了推测。建立的分析表征方法可以加深对重馏分油中含硫芳烃化合物的分子水平认识,为重油加工过程的原料选择与工艺条件优化提供技术支持。  相似文献   

16.
A gas chromatographic method using Kováts retention indices has been applied to determine the liquid vapour pressure (P(i)), enthalpy of vaporization (DeltaH(i)) and difference in heat capacity between gas and liquid phase (DeltaC(i)) for a group of polycyclic aromatic hydrocarbons (PAHs). This group consists of 19 unsubstituted, methylated and sulphur containing PAHs. Differences in log P(i) of -0.04 to +0.99 log units at 298.15K were observed between experimental values and data from effusion and gas saturation studies. These differences in log P(i) have been fitted with multilinear regression resulting in a compound and temperature dependent correction. Over a temperature range from 273.15 to 423.15K, differences in corrected log P(i) of a training set (-0.07 to +0.03 log units) and a validation set (-0.17 to 0.19 log units) were within calculated error ranges. The corrected vapour pressures also showed a good agreement with other GC determined vapour pressures (average -0.09 log units).  相似文献   

17.
A new method of quantitative structure‐retention relationship (QSRR) is proposed for estimating and predicting gas chromatographic retention indices of alkanes by using a novel molecular distance‐edge vector, called μ vector, containing 10 elements. The QSRR model (Ml), between the μ vector and chromatographic retention indices of 64 alkanes, was developed by using multiple linear regression (MLR) with the correlation coefficient being R = 0.9992 and the root mean square (RMS) error between the estimated and measured retention indices being RMS = 5.938. In order to explain the equation stability and prediction abilities of the M1 model, it is essential to perform a cross‐validation (CV) procedure. Satisfactory CV results have been obtained by using one external predicted sample every time with the average correlation coefficient being R = 0.9988 and average RMS = 7.128. If 21 compounds, about one third drawn from all 64 alkanes, construct an external prediction set and the 43 remaining construct an internal calibration set, the second QSRR model (M2) can be created by using calibration set data with statistics being R = 0.9993 and RMS = 5.796. The chromatographic retention indices of 21 compounds in the external testing set can be predicted by the M2 model and good prediction results are obtained with R = 0.9988 and RMS = 6.508.  相似文献   

18.
With the successful implementation of poly(4-vinylpyridine)-grafted silica prepared by grafting-from approach (GF-VP(n)) as a stationary phase for the separation of polycyclic aromatic hydrocarbons (PAHs) in normal-phase HPLC, this paper describes the chromatographic retention behaviors of PAHs with GF-VP(n) in reversed-phase HPLC. Significantly higher retention factor along with enhanced shape selectivity were observed with GF-VP(n). Thermodynamic study on the retention behaviors of PAHs with GF-VP(n) in normal-phase and reversed-phase HPLC revealed that retention of PAHs was exothermic in both phases. Furthermore, higher entropic contribution was observed in reversed-phase HPLC compared to normal-phase HPLC.  相似文献   

19.
分子距边矢量研究链烃与醛酮的定量构效关系   总被引:11,自引:1,他引:10  
按碳原子及键合特性分类定义并计算了链烃包括烷、烯,炔,双烯,烯炔烃的分子距离-边数矢量(MDE),将153个链烃的MDE矢量与相应的沸点相关联,得到良好的线性模型,复相关系数R=0.9976,均方根误差0.9975、RMS=4.72K和R=0.9972、RMS=5.13K。结果表明模型具有良好的稳定性和预测能力。进一步对杂原用染色因子进行标识,提出了一种适用于含杂原子体系分子结构描述的MDE矢量,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号