首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This work investigates the photoinduced energy transfer from poly(N‐vinylcarbazole) (PVK), as a donor material, to fac‐(2,2′‐bipyridyl)Re(CO)3Cl, as a catalyst acceptor, for its potential application towards CO2 reduction. Photoluminescence quenching experiments reveal dynamic quenching through resonance energy transfer in solid donor/acceptor mixtures and in solid/liquid systems. The bimolecular reaction rate constant at solution–film interfaces for the elementary reaction of the excited state with the quencher material could be determined as 8.8(±1.4)×1011 L mol?1 s?1 by using Stern–Volmer analysis. This work shows that PVK is an effective and cheap absorber material that can act efficiently as a redox photosensitizer in combination with fac‐(2,2′‐bipyridyl)Re(CO)3Cl as a catalyst acceptor, which might lead to possible applications in photocatalytic CO2 reduction.  相似文献   

2.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

3.
The catalytic activity of graphene oxide‐bound tetrakis(p ‐aminophenyl)porphyrinatotin(IV) trifluoromethanesulfonate, [SnIV(TNH2PP)(OTf)2], in the trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) is reported. The prepared catalyst was characterized using inductively coupled plasma analysis, scanning electron microscopy, transmission electron microscopy, and Fourier transform infrared and diffuse reflectance UV–visible spectroscopies. This heterogeneous catalyst was used for selective trimethylsilylation of various alcohols and phenols with HMDS in short reaction times and high yields. Also, the catalyst is of high reusability and stability, in that it was recovered several times without loss of its initial activity. The chemoselectivity of this catalytic system in the silylation of primary alcohols in the presence of secondary and tertiary alcohols and also phenols was investigated.  相似文献   

4.
Chitosan sulfonic acid (CS–SO3H), a biodegradable green catalyst, was found to be an impressive system for one‐pot four‐component reaction of different aromatic aldehydes, 3‐acetylcoumarin, dimedone, and ammonium acetate leading to 7,7‐dimethyl‐2‐(2‐oxo‐2H‐chromen‐3‐yl)‐4‐aryl‐7,8‐dihydroquinolin‐5(6H)‐one under solvent‐free condition. This methodology produces diverse superiorities such as operational simplicity, short reaction time, and high yield. Further, the catalyst can be reused for four times without any noticeable decrease in the catalytic activity.  相似文献   

5.
The phosphorus ylide [Ph3PCHC(O)C6H4‐NO2–4] reacted with Pd(OAc)2 to give the C,C‐orthometallated complex [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐OAc)]2, which underwent bridge exchange reaction with NaN3, NaCl, KBr and KI, respectively, to afford the binuclear C,C‐orthopalladated complexes [Pd{κ2(C,C)‐C6H4PPh2C(H)CO(C6H4‐NO2–4)}(μ‐X)]2 (X = N3 ( 1 ), Cl ( 2 ), Br ( 3 ) and I ( 4 )). The complexes were identified using spectroscopy (infrared and NMR), CHNS technique and single‐crystal X‐ray structure analysis. Thereafter, palladium nanoparticles with narrow size distribution were easily prepared using the refluxing reaction of iodo‐bridged orthopalladated complex 4 with poly(N ‐vinyl‐2‐pyrrolidone) (PVP) as the protecting group. The PVP‐stabilized palladium nanoparticles were characterized using a variety of techniques including X‐ray diffraction, transmission and scanning electron microscopies, energy‐dispersive X‐ray spectroscopy, inductively coupled plasma analysis and Fourier transform infrared spectroscopy. The catalytic activity of the PVP‐stabilized palladium nanoparticles was evaluated in the Suzuki reaction of phenylboronic acid and the Heck reaction of styrene with aryl halides of varying electron densities. This catalyst exhibited excellent catalytic activity for Suzuki cross‐coupling reactions in ethanol–water. Notably, aryl chlorides which are cheaper and more accessible than their bromide and iodide counterparts also reacted satisfactorily using this catalyst. After completion of reactions, the catalyst could be separated using a simple method and used many times in repeat cycles without considerable loss in its activity.  相似文献   

6.
The kinetics and mechanism of Hg2+‐catalyzed substitution of cyanide ion in an octahedral hexacyanoruthenate(II) complex by nitroso‐R‐salt have been studied spectrophotometrically at 525 nm (λmax of the purple‐red–colored complex). The reaction conditions were: temperature = 45.0 ± 0.1°C, pH = 7.00 ± 0.02, and ionic strength (I) = 0.1 M (KCl). The reaction exhibited a first‐order dependence on [nitroso‐R‐salt] and a variable order dependence on [Ru(CN)64?]. The initial rates were obtained from slopes of absorbance versus time plots. The rate of reaction was found to initially increase linearly with [nitroso‐R‐salt], and finally decrease at [nitroso‐R‐salt] = 3.50 × 10?4 M. The effects of variation of pH, ionic strength, concentration of catalyst, and temperature on the reaction rate were also studied and explained in detail. The values of k2 and activation parameters for catalyzed reaction were found to be 7.68 × 10?4 s?1 and Ea = 49.56 ± 0.091 kJ mol?1, ΔH = 46.91 ± 0.036 kJ mol?1, ΔS = ?234.13 ± 1.12 J K?1 mol?1, respectively. These activation parameters along with other experimental observations supported the solvent assisted interchange dissociative (Id) mechanism for the reaction. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 41: 215–226, 2009  相似文献   

7.
A zirconium‐based metal–organic framework, UiO‐66‐NH2, modified by melamine (Mlm) was used as a support for CuO nanoparticles (NPs). Melamine offered a platform for uniform and homogeneous distribution of NPs on the surface of the frameworks and made a strong bonding to the NPs to avoid undesirable leaching. UiO‐66‐NH2‐Mlm/CuO NPs were used for the Buchwald–Hartwig C–N cross‐coupling reaction to synthesize arylated anilines from phenyl iodide, bromide, and chloride and primary and secondary amines in DMF at 110°C. The catalyst was also employed for the synthesis of 2‐substituted benzimidazole derivatives from various aromatic aldehydes and o‐phenylenediamine in the absence of an oxidant in EtOH at room temperature. The catalyst was recyclable and reusable for several times and exhibited good stability (examined by BET, XRD, and SEM–EDX) in reaction conditions.  相似文献   

8.
A binary catalyst system of a chiral (R,R)‐SalenCoIII(2,4‐dinitrophenoxy) (salen = N,N‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐diphenylethylenediimine) in conjunction with (4‐dimethylamino)pyridine (DMAP) was developed to generate the copolymerization of carbon dioxide (CO2) and racemic propylene oxide (rac‐PO). The influence of the molar ratio of catalyst components, the operating temperature, and reaction pressure on the yield as well as the molecular weight of polycarbonate were systematically investigated. High yield of turnover frequency (TOF) 501.2 h?1 and high molecular weight of 70,400 were achieved at an appropriate combination of all variables. The structures of as‐prepared products were characterized by the IR, 1H NMR, 13C NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100% carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5050–5056, 2007  相似文献   

9.
Well‐designed, self‐assembled, metal–organic frameworks were constructed by simple mixing of multitopic MonoPhos‐based ligands ( 3 ; MonoPhos=chiral, monodentate phosphoramidites based on the 1,1′‐bi‐2‐naphthol platform) and [Rh(cod)2]BF4 (cod=cycloocta‐1,5‐diene). This self‐supporting strategy allowed for simple and efficient catalyst immobilization without the use of extra added support, giving well‐characterized, insoluble (in toluene) polymeric materials ( 4 ). The resulting self‐supported catalysts ( 4 ) showed outstanding catalytic performance for the asymmetric hydrogenation of a number of α‐dehydroamino acids ( 5 ) and 2‐aryl enamides ( 7 ) with enantiomeric excess (ee) ranges of 94–98 % and 90–98 %, respectively. The linker moiety in 4 influenced the reactivity significantly, albeit with slight impact on the enantioselectivity. Acquisition of reaction profiles under steady‐state conditions showed 4 h and 4 i to have the highest reactivity (turnover frequency (TOF)=95 and 97 h?1 at 2 atm, respectively), whereas appropriate substrate/catalyst matching was needed for optimum chiral induction. The former was recycled 10 times without loss in ee (95–96 %), although a drop in TOF of approximately 20 % per cycle was observed. The estimation of effective catalytic sites in self‐supported catalyst 4 e was also carried out by isolation and hydrogenation of catalyst–substrate complex, showing about 37 % of the RhI centers in the self‐supported catalyst 4 e are accessible to substrate 5 c in the catalysis. A continuous flow reaction system using an activated C/ 4 h mixture as stationary‐phase catalyst for the asymmetric hydrogenation of 5 b was developed and run continuously for a total of 144 h with >99 % conversion and 96–97 % enantioselectivity. The total Rh leaching in the product solution is 1.7 % of that in original catalyst 4 h .  相似文献   

10.
Neutral half‐sandwich η6p ‐cymene ruthenium(II) complexes of general formula [Ru(η6p ‐cymene)Cl(L)] (HL = monobasic O, N bidendate benzoylhydrazone ligand) have been synthesized from the reaction of [Ru(η6p ‐cymene)(μ‐Cl)Cl]2 with acetophenone benzoylhydrazone ligands. All the complexes have been characterized using analytical and spectroscopic (Fourier transform infrared, UV–visible, 1H NMR, 13C NMR) techniques. The molecular structures of three of the complexes have been determined using single‐crystal X‐ray diffraction, indicating a pseudo‐octahedral geometry around the ruthenium(II) ion. All the ruthenium(II) arene complexes were explored as catalysts for transfer hydrogenation of a wide range of aromatic, cyclic and aliphatic ketones with 2‐propanol using 0.1 mol% catalyst loading, and conversions of up to 100% were obtained. Further, the influence of other variables on the transfer hydrogenation reaction, such as base, temperature, catalyst loading and substrate scope, was also investigated.  相似文献   

11.
A novel catalyst composed of neodymium (III) isopropoxide [Nd(OiPr)3] and methylaluminoxane (MAO) was examined in isoprene polymerization. The Nd(OiPr)3‐MAO catalyst proved to be highly effective in heptane even at low [Al]/[Nd] ratios (ca. 30) to give polyisoprene that possessed high cis‐1,4 stereoregularity (> ca. 90%), a high number‐average molecular weight (Mn ~105), and relatively narrow molecular weight distributions (Mw/Mn = 1.9–2.8). The catalyst activity increased with an increasing [Al]/[Nd] ratio from 10 to 80 as well as temperature of aging and polymerization from 0 to 60 °C. The polymerization proceeded in the first order with respect to the monomer concentration. Aliphatic solvents (heptane and cyclohexane) achieved a higher yield and Mn of polymer than toluene as a solvent. The Mw/Mn ratio remained around 2.0, and the gel permeation chromatographic curve was always unimodal, indicating that this system is homogeneous and involves a single active site. The microstructure of polyisoprene was determined by IR, 1H NMR, and 13C NMR. The cis‐1,4 contents of the final polymers stayed in the range of 90–92%, regardless of reaction conditions, indicating the high stability of stereospecificity of the catalyst. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1838–1844, 2002  相似文献   

12.
A series of novel types of three‐armed poly(trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline)‐block‐poly(ε‐caprolactone) (PHpr‐b‐PCL) copolymers were successfully synthesized via melt block copolymerization of trans‐4‐hydroxy‐N‐benzyloxycarbonyl‐L ‐proline (N‐CBz‐Hpr) and ε‐caprolactone (ε‐CL) with a trifunctional initiator trimethylolpropane (TMP) and stannous octoate (SnOct2) as a catalyst. For the homopolycondensation of N‐CBz‐Hpr with TMP initiator and SnOct2 catalyst, the number‐average molecular weight (Mn) of prepolymer increases from 530 to 3540 g mol?1 with the molar ratio of monomer to initiator (3–30), and the molecular weight distribution (Mw/Mn) is between 1.25 to 1.32. These three‐armed prepolymer PHpr were subsequently block copolymerized with ε‐caprolactone (ε‐CL) in the presence of SnOct2 as a catalyst. The Mn of the copolymer increased from 2240 to 18,840 g mol?1 with the molar ratio (0–60) of ε‐CL to PHpr. These products were characterized by differential scanning calorimetry (DSC), 1H NMR, and gel permeation chromatography. According to DSC, the glass‐transition temperature (Tg) of the three‐armed polymers depended on the molar ratio of monomer/initiator that were added. In vitro degradation of these copolymers was evaluated from weight‐loss measurements and the change of Mn and Mw/Mn. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1708–1717, 2005  相似文献   

13.
Preparation of functional fluoromaterials through chemical modification of traditional fluoropolymers has been recognized as an economic and convenient strategy to expand the application areas of fluoropolymers. Poly(vinylidene fluoride‐co‐chlorotrifluoroethylene)‐grafted‐polyacrylonitrile (P(VDF‐co‐CTFE)‐g‐PAN) has been successfully synthesized via single electron transfer–living radical polymerization (SET–LRP) process initiated with macroinitiator P(VDF‐co‐CTFE) in the presence of trace amount of Cu(0)/tris(2(dimethylamino)ethyl)amine (Me6‐TREN) in dimethyl sulfoxide (DMSO) at ambient temperature. The typical side reactions happened on P(VDF‐co‐CTFE) induced by the nitrogen‐containing solvents and high reaction temperature in atom transfer radical polymerization process could be avoided in SET–LRP process by using the mild reaction conditions. Well‐controlled polymerization features were observed under varied reaction conditions including the different reaction temperature, catalyst concentration, as well as monomer amount in feed. An induction period of 0.5–1.0 h in the polymerization procedure was observed at low temperature, which may be attributed to the Cu2O from the surface of the Cu(0) powder. When Cu(0) catalyst is activated, the introduction period is eliminated. The polymerization rates were decelerated by adding excessive Me6‐TREN for the formation of more stable CuCl2/(Me6‐TREN)2. The structure of P(VDF‐co‐CTFE)‐g‐PAN was demonstrated by FTIR, NMR, DSC, and TGA. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
A copper catalyst has been explored as an efficient and recyclable catalyst to effect Sonogashira and Suzuki cross‐coupling reactions. After modification of 2‐(((piperazin‐1‐ylmethyl)imino)methyl)phenol (PP) on the surface of amorphous silica‐coated iron oxide (Fe3O4@SiO2@Cl) magnetic core–shell nanocomposite, copper(II) chloride was employed to synthesize the Fe3O4@SiO2@PP‐Cu catalyst, affording a copper loading of 1.52 mmol g−1. High yield, low reaction times, non‐toxicity and recyclability of the catalyst are the main merits of this protocol. The catalyst was characterized using Fourier transform infrared, X‐ray photoelectron, energy‐dispersive X‐ray and inductively coupled plasma optical emission spectroscopies, X‐ray diffraction, scanning and transmission electron microscopies, and vibrating sample magnetometry.  相似文献   

15.
Cu(II) immobilized on mesoporous organosilica nanoparticles (Cu2+@MSNs‐(CO2?)2) has been synthesized, as a inorganic–organic nanohybrid catalyst, through a post‐grafting approach. Its characterization is carried out by Fourier transform infrared spectroscopy (FT‐IR), X‐ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X‐ray (EDX), Thermogravimetric/differential thermal analyses (TGA‐DTA), and Nitrogen adsorption–desorption analysis. Cu2+@MSNs‐(CO2?)2 exhibits high catalytic activity in the Biginelli reaction for the synthesis of a diverse range of 3, 4‐dihydropyrimidin‐2(1H)‐ones, under mild conditions. The anchored Cu(II) could not leach out from the surface of the mesoporous catalyst during the reaction and it has been reused several times without appreciable loss in its catalytic activity.  相似文献   

16.
A direct catalytic asymmetric aldol‐type reaction of 3‐substituted‐2‐oxindoles with glyoxal derivatives and ethyl trifluoropyruvate, catalyzed by a chiral N,N′‐dioxide–Sc(OTf)3 (Tf=trifluoromethanesulfonyl) complex, has been developed that tolerates a wide range of substrates. The reaction proceeds in good yields and excellent enantioselectivities (up to 93 % yield, 99:1 diastereomeric ratio (dr), and >99 % enantiomeric excess (ee)) under mild conditions, to deliver 3‐(α‐hydroxy‐β‐carbonyl) oxindoles with vicinal quaternary–tertiary or quaternary–quaternary stereocenters. Even with 1 mol % catalyst loading or on scaleup (10 mmol of starting material), maintenance of ee was observed, which showed the potential value of the catalyst system. In studies probing the reaction mechanism, a positive nonlinear effect was observed and ScIII‐based enolate intermediates were detected by using ESIMS. On the basis of the experimental results and previous reports, a possible catalytic cycle was assumed.  相似文献   

17.
A heterogeneous material composed of MCM‐48/H5PW10V2O40 was produced and used as an efficient, eco‐friendly and highly recyclable catalyst for the one‐pot and multicomponent synthesis of 3,4‐dihydroquinoxalin‐2‐amine, diazepine‐tetrazole and benzodiazepine‐2‐carboxamide derivatives in aqueous media and at room temperature with high yields in short reaction times (40–60 min). The recoverable catalyst was easily recycled at least five times without any loss of catalytic activity. The structures of obtained products were confirmed using 1H NMR and 13C NMR spectra.  相似文献   

18.
Poly(5,6‐difluoro‐2,1,3‐benzothiadiazole‐alt‐9,9‐dioctylfluorene) was successfully synthesized via direct arylation polycondensation of 5,6‐difluoro‐2,1,3‐benzothiadiazole and 2,7‐dibromo‐9,9‐dioctylfluorene. The reaction conditions were optimized, and a polymer with number‐average molecular weight (Mn) of 41,000 was obtained by using Pd(OAc)2, PtBu2Me‐HBF4, pivalic acid, K2CO3, and toluene as catalyst, ligand, additive, base, and solvent, respectively. The polycondensation was also performed with 5,6‐dioctyloxy‐2,1,3‐benzothiadiazole or 2,1,3‐benzothiadiazole as the comonomer, and the results indicate that the introduction of electron‐withdrawing fluorine atoms at the ortho‐positions to the C? H bonds is essential for the reactivity of the direct arylation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2367–2374  相似文献   

19.
Pd‐mediated Negishi cross‐coupling reactions were studied by a combination of kinetic measurements, electrospray‐ionization (ESI) mass spectrometry, 31P NMR and UV/Vis spectroscopy. The kinetic measurements point to a rate‐determining oxidative addition. Surprisingly, this step seems to involve not only the Pd catalyst and the aryl halide substrate, but also the organozinc reagent. In this context, the ESI‐mass spectrometric observation of heterobimetallic Pd–Zn complexes [L2PdZnR]+ (L=S‐PHOS, R=Bu, Ph, Bn) is particularly revealing. The inferred presence of these and related neutral complexes with a direct Pd–Zn interaction in solution explains how the organozinc reagent can modulate the reactivity of the Pd catalyst. Previous theoretical calculations by González‐Pérez et al. (Organometallics­ 2012 , 31, 2053) suggest that the complexation by the organozinc reagent lowers the activity of the Pd catalyst. Presumably, a similar effect also causes the rate decrease observed upon addition of ZnBr2. In contrast, added LiBr apparently counteracts the formation of Pd–Zn complexes and restores the high activity of the Pd catalyst. At longer reaction times, deactivation processes due to degradation of the S‐PHOS ligand and aggregation of the Pd catalyst come into play, thus further contributing to the appreciable complexity of the title reaction.  相似文献   

20.
The ionic [Ti33‐OPri)2(µ‐OPri)3(OPri)6][FeCl4] halo‐alkoxide ( A ) was investigated for its activity towards the bulk polymerization of rac‐lactide (rac‐LA) and ?‐caprolactone (?‐CL) in various temperatures, monomer/ A molar proportions, and reaction times. The reactivity of A in the ring‐opening polymerization (ROP) of both monomers is mainly due to the cationic [Ti3(OPri)11]+ unity and proceeds through the coordination–insertion mechanism. Molecular weights ranging from 6,379 to 13,950 g mol?1 and PDI values varying from 1.22 to 1.52 were obtained. Results of ROP kinetic studies for both ?‐CL and rac‐LA confirm that the reaction rates are first‐order with respect to monomers. The production of poly(?‐caprolactone) shows a higher sensitivity of the reaction rate to temperature, while the polymerization of rac‐LA is slower and more dependent on the thermal stability of the active species during the propagation step. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2509–2517  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号