首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
An effective one‐pot, convenient process for the synthesis of 1‐ and 5‐substituted 1H‐tetrazoles from nitriles and amines is described using1,4‐dihydroxyanthraquinone–copper(II) supported on Fe3O4@SiO2 magnetic porous nanospheres as a novel recyclable catalyst. The application of this catalyst allows the synthesis of a variety of tetrazoles in good to excellent yields. The preparation of the magnetic nanocatalyst with core–shell structure is presented by using nano‐Fe3O4 as the core, tetraethoxysilane as the silica source and poly(vinyl alcohol) as the surfactant, and then Fe3O4@SiO2 was coated with 1,4‐dihydroxyanthraquinone–copper(II) nanoparticles. The new catalyst was characterized using Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, dynamic light scattering, thermogravimetric analysis, vibration sample magnetometry, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherm analysis and inductively coupled plasma analysis. This new procedure offers several advantages such as short reaction times, excellent yields, operational simplicity, practicability and applicability to various substrates and absence of any tedious workup or purification. In addition, the excellent catalytic performance, thermal stability and separation of the catalyst make it a good heterogeneous system and a useful alternative to other heterogeneous catalysts. Also, the catalyst could be magnetically separated and reused six times without significant loss of catalytic activity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
Fe3O4@SiO2 nanoparticles was functionalized with a binuclear Schiff base Cu(II)‐complex (Fe3O4@SiO2/Schiff base‐Cu(II) NPs) and used as an effective magnetic hetereogeneous nanocatalyst for the N‐arylation of α‐amino acids and nitrogen‐containig heterocycles. The catalyst, Fe3O4@SiO2/Schiff base‐Cu(II) NPs, was characterized by Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐vis) analyses step by step. Size, morphology, and size distribution of the nanocatalyst were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scatterings (DLS) analyses, respectively. The structure of Fe3O4 nanoparticles was checked by X‐ray diffraction (XRD) technique. Furthermore, the magnetic properties of the nanocatalyst were investigated by vibrating sample magnetometer (VSM) analysis. Loading content as well as leaching amounts of copper supported by the catalyst was measured by inductive coupled plasma (ICP) analysis. Also, thermal studies of the nanocatalyst was studied by thermal gravimetric analysis (TGA) instrument. X‐ray photoelectron spectroscopy (XPS) analysis of the catalyst revealed that the copper sites are in +2 oxidation state. The Fe3O4@SiO2/Schiff base‐Cu(II) complex was found to be an effective catalyst for C–N cross‐coupling reactions, which high to excellent yields were achieved for α‐amino acids as well as N‐hetereocyclic compounds. Easy recoverability of the catalyst by an external magnet, reusability up to eight runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.  相似文献   

3.
The surface of Fe3O4@SiO2 nanoparticles was modified using l ‐arginine as a green and available amino acid to trap palladium nanoparticles through a strong interaction between the metal nanoparticles and functional groups of the amino acid. The proposed green synthetic method takes advantage of nontoxic reagents through a simple procedure. Characterization of Fe3O4@SiO2@l ‐arginine@Pd(0) was done using Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, vibrating sample magnetometry and inductively coupled plasma analysis. The catalytic activity of Fe3O4@SiO2@l ‐arginine@Pd(0) as a new nanocatalyst was investigated in C – C coupling reactions. Waste‐free, use of green medium, efficient synthesis leading to high yield of products, eco‐friendly and economic catalyst, excellent reusability of the nanocatalyst and short reaction time are the main advantages of the method presented. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A new magnetically separable nickel catalyst (Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2) was readily prepared and structurally characterized by Fourier transform infrared spectroscopy (FT‐IR), Scanning electron microscopy (SEM), Energy‐dispersive X‐ray spectroscopy (EDX), Vibrating sample magnetometer (VSM), X‐Ray diffraction (XRD) and Atomic absorption spectroscopy (AAS). The Ni(NO3)2?Imine/Thiophene‐Fe3O4@SiO2 exhibited efficient catalytic activity in the synthesis of 2,3‐dihydroquinazoline‐4(1H)‐ones and polyhydroquinolines. Catalysis research under water and solvent‐free conditions makes also this synthetic protocol ideal and fascinating from the environmental point of view. The catalyst can be magnetically recovered after the reaction and can be reused for many times without appreciable decrease in activity.  相似文献   

5.
An advanced novel magnetic ionic liquid based on imidazolium tagged with ferrocene, a supported ionic liquid, is introduced as a recyclable heterogeneous catalyst. Catalytic activity of the novel nanocatalyst was investigated in one‐pot three‐component reactions of various aldehydes, malononitrile and 2‐naphthol for the facile synthesis of 2‐amino‐3‐cyano‐4H‐pyran derivatives under solvent‐free conditions without additional co‐catalyst or additive in air. For this purpose, we firstly synthesized and investigated 1‐(4‐ferrocenylbutyl)‐3‐methylimidazolium acetate, [FcBuMeIm][OAc], as a novel basic ferrocene‐tagged ionic liquid. This ferrocene‐tagged ionic liquid was then linked to silica‐coated nano‐Fe3O4 to afford a novel heterogeneous magnetic nanocatalyst, namely [Fe3O4@SiO2@Im‐Fc][OAc]. The synthesized novel catalyst was characterized using 1H NMR, 13C NMR, Fourier transform infrared and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, and transmission and field emission scanning electron microscopies. Combination of some unique characteristics of ferrocene and the supported ionic liquid developed the catalytic activity in a simple, efficient, green and eco‐friendly protocol. The catalyst could be reused several times without loss of activity.  相似文献   

6.
In the current study, a novel and reusable biological urea based nano magnetic catalyst namely Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was designed and synthesized. The structure of the titled catalyst was fully characterized using several skills including Fourier transform infrared (FT‐IR) spectroscopy, energy dispersive X‐ray (EDX) analysis, X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermo gravimetric analysis/differential thermal analysis (TG/DTG) and vibrating sample magnetometer (VSM). Then, the catalytic performance of Fe3O4@SiO2@(CH2)3‐urea‐benzimidazole sulfonic acid was successfully inspected towards the multicomponent synthesis of 2‐amino‐3‐cyano pyridine derivatives through a vinylogous anomeric based oxidation pathway.  相似文献   

7.
Magnetic mesoporous silica was prepared via embedding magnetite nanoparticles between channels of mesoporous silica (SBA‐15). The prepared composite (Fe3O4@SiO2‐SBA) was then reacted with 3‐chloropropyltriethoxysilane, sodium imidazolide and 2‐bromopyridine to give 3‐(pyridin‐2‐yl)‐1H‐imidazol‐3‐iumpropyl‐functionalized Fe3O4@SiO2‐SBA as a supported pincer ligand for Pd(II). The functionalized magnetic mesoporous silica was further reacted with [PdCl2(SMe2)2] to produce a supported N‐heterocyclic carbene–Pd(II) complex. The obtained catalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray analysis, vibrating sample magnetometry, Brunauer–Emmett–Teller surface area measurement and X‐ray diffraction. The amount of the loaded complex was 80.3 mg g?1, as calculated through thermogravimetric analysis. The formation of the ordered mesoporous structure of SBA‐15 was confirmed using low‐angle X‐ray diffraction and transmission electron microscopy. Also, X‐ray photoelectron spectroscopy confirmed the presence of the Pd(II) complex on the magnetic support. The prepared magnetic catalyst was then effectively used in the coupling reaction of olefins with aryl halides, i.e. the Heck reaction, in the presence of a base. The reaction parameters, such as solvent, base, temperature, amount of catalyst and reactant ratio, were optimized by choosing the coupling reaction of 1‐bromonaphthalene and styrene as a model Heck reaction. N‐Methylpyrrolidone as solvent, 0.25 mol% catalyst, K2CO3 as base, reaction temperature of 120°C and ultrasonication of the catalyst for 10 min before use provided the best conditions for the Heck cross‐coupling reaction. The best results were observed for aryl bromides and iodides while aryl chlorides were found to be less reactive. The catalyst exhibited noticeable stability and reusability.  相似文献   

8.
Semicarbazide functionalized with chlorosulfonic acid on the surface of silica‐coated magnetic nanoparticles, {Fe3O4@SiO2@(CH2)3Semicarbazide‐SO3H/HCl}, as a novel magnetic Brønsted acid catalyst according to the aims of green chemistry was synthesized and fully characterized using Fourier transform infrared, UV–visible and energy‐dispersive X‐ray spectroscopies, X‐ray diffraction, scanning electron, transmission electron and atomic force microscopies and thermogravimetric analysis. The capability and excellent activity of this nanoparticle catalyst were exhibited in the synthesis of two series of compounds with important biological activities, namely 3,3′‐(arylmethylene)bis(4‐hydroxycoumarin) and 1‐carbamato‐alkyl‐2‐naphthol derivatives, under mild, green and solvent‐free conditions. To the best of our knowledge, this is the first study of the synthesis and application of {Fe3O4@SiO2@(CH2)3Semicarbazide‐SO3H/HCl} as Brønsted acid solid magnetic nanoparticles. Consequently the present study can open up a novel and promising intuition in the sequence of logical design, synthesis and applications of task‐specific Brønsted acid magnetic nanoparticle catalyst with favourable properties as a full‐fledged efficient material for sustainable approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Novel Pd nanoparticles were prepared in five successive stages: 1) preparation of the Fe3O4 magnetic nanoparticles (Fe3O4 MNPs), 2) coating of Fe3O4 MNPs with SiO2 (Fe3O4@SiO2), 3) functionalization of Fe3O4@SiO2 with 3‐chloropropyltrimethoxy‐ silane (CPTMS) ligand (Fe3O4@SiO2@CPTMS), 4) further functionalization with 3,5‐diamino‐1,2,4‐triazole (DAT) ligand (Fe3O4@SiO2@CPTMS @DAT), and 5) the complexation of Fe3O4@SiO2@CPTMS@DAT with PdCl2 (Fe3O4@SiO2@CPTMS@ DAT@Pd). Then, the obtained Pd nano‐catalyst characterized by different methods such as the elemental analysis (CHN), FT‐IR, XRD, EDX, SEM, TEM, TG‐DTA and VSM. Finally, the Pd catalyst was applied for the synthesis of various 2‐imino‐3‐phenyl‐2,3‐dihydrobenzo[d]oxazol‐5‐ols.  相似文献   

10.
Magnetic core–shell titanium dioxide nanoparticles (Fe3O4@SiO2@TiO2) were applied for the efficient preparation of 1,2,4,5‐tetrasubstituted imidazole derivatives by the one‐pot multi‐component condensation of benzil with aldehydes, primary amines and ammonium acetate under solvent‐free conditions. The catalyst was synthesized and studied using several techniques including X‐ray diffraction, transmission electron microscopy, field‐emission scanning electron microscopy and energy‐dispersive X‐ray spectroscopy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
An effective approach of one‐pot catalytic Strecker reaction between aromatic aldehydes, aniline or toluidine and trimethylsilyl cyanide in the presence of amine‐functionalized Fe3O4@SiO2 nanoparticles grafted with gallic acid (GA) as a powerful catalyst was developed. The fabricated reusable catalyst demonstrated high efficiency in the synthesis of α‐aminonitriles along with facile work‐up procedure. Fe3O4@SiO2‐NH2‐GA was characterized by Fourier transform‐infrared spectroscopy, scanning electron microscopy image, vibrating‐sample magnetometer curve, energy‐dispersive X‐ray analysis and thermogravimetric analysis.  相似文献   

12.
Urea was successfully immobilized on the surface of chloropropyl‐modified Fe3O4@SiO2 core–shell magnetic nanoparticles, then supported by MgBr2 and acts as a unique catalyst for oxidation of benzylic alcohols to aldehydes and ketones, and ortho‐formylation of phenols to salicylaldehydes. The prepared catalyst was characterized by FT‐IR, transmission electron microscopy, scanning electron microscopy, X‐ray powder diffraction, dispersive X‐ray spectroscopy, CHN and TGA. It was found that Fe3O4@SiO2 ~ urea/MgBr2 showed higher catalytic activity than homogenous MgBr2, and could be reused several times without significant loss of activity.  相似文献   

13.
The preparation of Ni@Pd core–shell nanoparticles immobilized on yolk–shell Fe3O4@polyaniline composites is reported. Fe3O4 nanoclusters were first synthesized through the solvothermal method and then the SiO2 shell was coated on the Fe3O4 surface via a sol–gel process. To prepare Fe3O4@SiO2@polyaniline composites, polyvinylpyrrolidone was first grafted on to the surface of Fe3O4@SiO2 composites and subsequently polymerization of aniline was carried out via an ultrasound‐assisted in situ surface polymerization method. Selective etching of the middle SiO2 layer was then accomplished to obtain the yolk–shell Fe3O4@polyaniline composites. The approach uses polyaniline (PANI) conductive polymer as a template for the synthesis of Ni@Pd core–shell nanoparticles. The catalytic activity of the synthesized yolk–shell Fe3O4@PANI/Ni@Pd composite was investigated in the reduction of o‐nitroaniline to benzenediamine by NaBH4, which exhibited conversion of 99% in 3 min with a very low content of the catalyst. Transmission electron microscopy, X‐ray photoelectron spectroscopy, TGA, X‐ray diffraction, UV–visible, scanning electron microscopy, X‐ray energy dispersion spectroscopy and FT‐IR were employed to characterize the synthesized nanocatalyst. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
A simple method, air‐assisted dispersive micro‐solid‐phase extraction‐based supramolecular solvent was developed for the preconcentration of tramadol in biological samples prior to gas chromatography–flame ionization detection. A new type of carrier liquid, supramolecular solvent based on a mixture of 1‐dodecanol and tetrahydrofuran was combined with layered double hydroxide coated on a magnetic nanoparticle (Fe3O4@SiO2@Cu–Fe–LDH). The supramolecular solvent was injected into the solution containing Fe3O4@SiO2@Cu–Fe–LDH in order to provide high stability and dispersion of the sorbent without any stabilizer agent. Air assisted was applied to enhance the dispersion of the sorbent and solvent. A number of analytical techniques such as Fourier transform‐infrared spectrometry, field emission scanning electron microscope, energy‐dispersive X‐ray spectroscopy and X‐ray diffraction measurements were applied to assess the surface chemical characteristics of Fe3O4@SiO2@Cu–Fe–LDH nanoparticles. The effects of important parameters on the extraction recovery were also investigated. Under optimized conditions, the limits of detection and quantification were obtained in the range of 0.9–2.4 and 2.7–7.5 μg L?1 with preconcentration factors in the range of 450–472 in biological samples. This method was used for the determination of tramadol in biological samples (plasma, urine and saliva samples) with good recoveries.  相似文献   

15.
CoFe2O4@SiO2‐CPTES‐Guanidine‐Cu(II) magnetic nanoparticles were synthesized and used as a new, inexpensive and efficient heterogeneous catalyst for the synthesis of polyhydroquinolines and 2,3‐dihydroquinazoline‐4(1H)‐ones and for the oxidation of sulfides. The structure of this nanocatalyst was characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, vibrating sample magnetometry, thermogravimetric analysis, X‐ray diffraction and inductively coupled plasma optical emission spectrometry. Simple preparation, high catalytic activity, simple operation, high yields, use of green solvents, easy magnetic separation and reusability of the catalyst are some of the advantages of this protocol.  相似文献   

16.
Four‐component condensation reaction of aromatic aldehydes, dimedone, ethyl acetoacetate and ammonium acetate in the presence of a catalytic amount of ionic liquid on silica‐coated Fe3O4 nanoparticles as a heterogeneous, recyclable and very efficient catalyst provided the corresponding polyhydroquinoline derivatives in good to excellent yields in ethanol under reflux condition. The [Fe3O4@SiO2@(CH2)3Py]HSO4? catalyst was characterized using various techniques such as scanning electron microscopy, powder X‐ray diffraction, thermogravimetric analysis, vibrating sample magnetometry and Fourier transform infrared spectroscopy. Furthermore, the recovery and reuse of the catalyst were demonstrated seven times without detectable loss in activity.  相似文献   

17.
Functional polymer‐grafting silica nanoparticles hold great promise in diverse applications such as molecule recognition, drug delivery, and heterogeneous catalysis due to high density and uniform distribution of functional groups and their tunable spatial distance. However, conventional grafting methods from monomers mainly consist of one or more extra surface modification steps and a subsequent surface polymerization step. A monomer protonation‐dependent surface polymerization strategy is proposed to achieve one‐step uniform surface grafting of cross‐linked poly(4‐vinylpyridine) (P4VP) onto core–shell Fe3O4@SiO2 nanostructures. At an approximate pH, partially protonated 4VP sites in aqueous solution can be strongly adsorbed onto deprotonated silanol groups ( Si O) onto Fe3O4@SiO2 nanospheres to ensure prior polymerization of these protonated 4VP sites exclusively onto Fe3O4@SiO2 nanoparticles and subsequent polymerization of other 4VP and divinylbenzene monomers harvested by these protonated 4VP monomers onto Fe3O4@SiO2 nanoparticles, thereby achieving direct grafting of cross‐linked P4VP macromolecules onto Fe3O4@SiO2 nanoparticles.  相似文献   

18.
We report a simple process for the synthesis of Fe3O4@SiO2/APTMS (APTMS = 3‐aminopropyltrimethoxysilane) core–shell nanocatalyst support. The new nanocatalyst was prepared by stabilization of Pd(cdha)2 (cdha = bis(2‐chloro‐3,4‐dihydroxyacetophenone)) on the surface of the Fe3O4@SiO2/APTMS support. The structure and composition of this catalyst were characterized using various techniques. An efficient method was developed for the synthesis of a wide variety of biaryl compounds via fluoride‐free Hiyama cross‐coupling reactions of aryl halides with arylsiloxane, with Fe3O4@SiO2/APTMS/Pd(cdha)2 as the catalyst under reaction conditions. This methodology can be performed at 100°C through a simple one‐pot operation using in situ generated palladium nanoparticles. High catalytic activity, quick separation of catalyst from products using an external magnetic field and use of water as green solvent are attributes of this protocol.  相似文献   

19.
This study describes the synthesis and characterization of ethylenediaminetetraacetic acid (EDTA) functionalized magnetic nanoparticles of 20 nm in size – Fe3O4@SiO2‐EDTA – which were used as a novel magnetic adsorbent for Cd(II) and Pb(II) binding in aqueous medium. These nanoparticles were obtained in two‐stage synthesis: covering by tetraethyl orthosilicate and functionalization with EDTA derivatives. Nanoparticles were characterized using TEM, FT‐IR, and XPS methods. Metal ions were detected under optimized experimental conditions using Differential Pulse Anodic Stripping Voltammetry (DPASV) and Hanging Mercury Drop Electrode (HDME) techniques. We compared the ability of Fe3O4@SiO2‐EDTA to bind cadmium and lead in concentration of 553.9 μg L?1 and 647.5 μg L?1, respectively. Obtained results show that the adsorption rate of cadmium binding was very high. The equilibrium for Fe3O4@SiO2‐EDTA‐Cd(II) was reached within 19 min while for the Fe3O4@SiO2‐EDTA‐Pb(II) was reached within 25 minutes. About 2 mg of nanoparticles was enough to bind 87.5 % Cd(II) and 54.1 % Pb(II) content. In the next step the binding capacity of Fe3O4@SiO2‐EDTA nanoparticles was determined. Only 1.265 mg of Fe3O4@SiO2‐EDTA was enough to bind 96.14 % cadmium ions while 5.080 mg of nanoparticles bound 40.83 % lead ions. This phenomenon proves that the studied nanoparticles bind Cd(II) much better than Pb(II). The cadmium ions binding capacity of Fe3O4@SiO2‐EDTA nanoparticles decreased during storage in 0.5 M KCl solution. Two days of Fe3O4@SiO2‐EDTA storage in KCl solution caused the 32 % increase in the amount of nanoparticles required to bind 60 % of cadmium while eight‐days storage caused further increase to 328 %. The performed experiment confirmed that the storage of nanoparticles in solution without any surfactants reduced their binding capacity. The best binding capacity was observed for the nanoparticles prepared directly before the electrochemical measurements.  相似文献   

20.
Fe3O4@SiO2‐Ag catalyst was found to be highly active and selective in the N ‐alkylation of amines with a variety of aromatic and linear alcohols. The heterogeneous nature of the Fe3O4@SiO2‐Ag catalyst allows easy recovery and regeneration by applying an external magnet for six subsequent reaction cycles. The prepared catalyst was characterized using electron microscopy techniques, X‐ray diffraction, vibrating sample magnetometry and atomic absorption spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号