首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The hydrogenation of 1,3-pentadiene into pentenes over the commercial 0.5% Pd/Al2O3 catalyst and over a new catalyst containing 1.0% Pd and 3.7% Ag (μ-catalyst) has been investigated. The new catalyst has been prepared via the flameless wave conversion of cyclotrimethylenetrinitramine in a porous composite. The catalytic properties of the new composite in the hydrogenation reaction depend on the hydrogen/1,3-pentadiene ratio and on the catalyst activation temperature. The reaction conditions for selective 1,3-pentadiene hydrogenation have been optimized. The pentenes yield as a function of temperature passes through a maximum at any H2/C5H8 ratio between 1 and 2. The 2-pentene/1-pentene ratio in the reaction products increases as the temperature is raised.  相似文献   

2.
The precursor nature effect on the state of the Pd–P surface layer in palladium catalysts and on their properties in the liquid-phase hydrogenation of chloronitrobenzenes under mild conditions has been investigated. A general feature of the Pd–P-containing nanoparticles obtained from different precursors and white phosphorus at P/Pd = 0.3 (PdCl2 precursor) and 0.7 (Pd(acac)2 precursor) is that their surface contains palladium in phosphide form (BE(Pd3d 5/2) = 336.2 eV and BE(Р2р) = 128.9 eV) and Pd(0) clusters (BE(Pd3d5/2) = 335.7 eV). Factors having an effect on the chemoselectivity of the palladium catalysts in chloronitrobenzenes hydrogenation are considered, including the formation of small palladium clusters responsible for hydrogenation under mild conditions.  相似文献   

3.
Pd–In/Al2O3 and Pd–In/MgAl2O4 catalysts prepared from dinuclear Pd–In acetate complexes were studied in the hydrogenation of alkyne compounds with different structures. The Pd–In catalysts demonstrate high selectivity in the hydrogenation of internal alkynes comparable with that of the Lindlar catalyst. Similar activity/selectivity characteristics are reached at a significantly lower Pd content. For terminal alkynes, the favorable effect of Indium introduction is considerably less pronounced. An analysis of the In effect on the selectivity and the ratio between the rates of the first and second hydrogenation steps suggests that the reaction selectivity is determined to a large extent by a thermodynamic factor (adsorption–desorption equilibrium between the reactants and the reaction products).  相似文献   

4.
采用密度泛函理论(DFT)研究糠醛在最稳定Pd/Cu(111)双金属表面上的吸附构型和糠醛脱碳及加氢的反应机理。结果表明,当糠醛初始吸附于O_3-Pd-top、O_7-Cu-hcp位时,吸附构型最稳定,其吸附能为73.4 kJ/mol。糠醛在Pd/Cu(111)双金属表面上更易发生脱碳反应。对于糠醛脱碳反应,所需活化能较低,各个基元反应均为放热反应,糠醛更易先失去支链上的H形成(C_4H_3O)CO,然后中间体脱碳加氢得到呋喃,其中,C_4H_3O加氢生成呋喃所需活化能(72.6 kJ/mol)最高,是反应的控速步骤。对于加氢反应,糠醛与首个氢原子的反应需要最大的活化能(290.4 kJ/mol),是反应的限速步骤。  相似文献   

5.
A series of metal‐modified HZSM‐5 catalysts were prepared by impregnation and were used for ethylbenzene dealkylation of the mixed C8 aromatics (ethylbenzene, m‐xylene and o‐xylene). The effects of different supported metals (Pt, Pd, Ni, Mo) on catalytic performance, including reaction conditions, were investigated. The physicochemical properties of catalysts were characterized by means of XRD, BET, TEM and NH3‐TPD. Experimental results showed that metallic modification obviously increased the ethylbenzene conversion and reduced the coke deposition, greatly improving the catalyst stability. The distinction of ethylbenzene conversion depended on the interaction between hydrogenation reactivity and acidic cracking of bifunctional metal‐modified zeolites. Compared with Pt and Ni, Pd and Mo were easier to disperse into HZSM‐5 micropores during loading metals. The acidic density of different metal‐modified HZSM‐5 declined in the following order: HZSM‐5>Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. The activity of ethylene hydrogenation decreased with Pt/HZSM‐5>Pd/HZSM‐5>Ni/HZSM‐5>Mo/HZSM‐5. In comparison, Pd/HZSM‐5 showed the best catalytic performance with both high activity and high selectivity, with less cracking loss of m‐xylene and o‐xylene. Moreover, the following reaction conditions were found to be preferable for ethylbenzene dealkylation over Pd/HZSM‐5: 340°C, 1.5 MPa H2, WHSV 4 h?1, H2/C8 4 mol/mol.  相似文献   

6.
A comparative catalytic study of Pd–Ag bimetallic catalysts and the commercial Lindlar catalyst (Pd–Pb/CaCO3) has been carried out in the hydrogenation of phenylacetylene (PA) and diphenylacetylene (DPA). The Pd–Ag catalysts have been prepared using the heterobimetallic complex PdAg2(OAc)4(HOAc)4 supported on MgAl2O4 and aluminas (α-Al2O3 and γ-Al2O3). Physicochemical studies have demonstrated that the reduction of supported Pd–Ag complex with hydrogen results in homogeneous Pd–Ag nanoparticles. Equal in selectivity to the Lindlar catalyst, the Pd–Ag catalysts are more active in DPA hydrogenation. The synthesized Pd–Ag catalysts are active and selective in PA hydrogenation as well, but the unfavorable ratio of the rates of the first and second stages of the process makes it difficult to kinetically control the reaction. The most promising results have been obtained for the Pd–Ag2/α-Al2O3 catalyst. Although this catalyst is less active, it is very selective and allows efficient kinetic control of the process to be carried out owing to the fact that, with this catalyst, the rate of hydrogenation of the resulting styrene is much lower than the rate of hydrogenation of the initial PA.  相似文献   

7.
Nanometer‐sized magnetic stirring bars containing Pd nanoparticles (denoted as Fe3O4‐NC‐PZS‐Pd) for heterogeneous catalysis in microscopic system were prepared through a facile two‐step process. In the hydrogenation of styrene, Fe3O4‐NC‐PZS‐Pd showed an activity similar to that of the commercial Pd/C catalyst, but much better stability. In microscopic catalytic systems, Fe3O4‐NC‐PZS‐Pd can effectively stir the reaction solution within microdrops to accelerate mass transfer, and displays far better catalytic activity than the commercial Pd/C for the hydrogenation of methylene blue in an array of microdroplets. These results suggested that the Fe3O4‐NC‐PZS‐Pd could be used as nanoscale stirring bars in nanoreactors.  相似文献   

8.
Akinori Mori 《Tetrahedron》2006,62(51):11925-11932
While Pd/C is one of the most useful catalysts for hydrogenation, the high catalyst activity of Pd/C causes difficulty in its application to chemoselective hydrogenation between different types of reducible functionalities. In order to achieve chemoselective hydrogenation using Pd/C, we investigated catalyst poison as a controller of the catalyst activity. We found that the addition of Ph2S (diphenylsulfide) to the Pd/C-catalyzed hydrogenation reaction mixture led to reasonable deactivation of Pd/C. By the use of the Pd/C-Ph2S catalytic system, olefins, acetylenes, and azides can be selectively reduced in the coexistence of aromatic carbonyls, aromatic halides, cyano groups, benzyl esters, and N-Cbz (benzyloxycarbonyl) protecting groups. The present method is promising as a general and practical chemoselective hydrogenation process in synthetic organic chemistry.  相似文献   

9.
A two-dimensional layered niobium oxide and its exfoliated nanosheet were examined as potential solid acid supports for direct synthesis of hydrogen peroxide from hydrogen and oxygen under intrinsically safe and noncorrosive reaction conditions. The catalytic performance strongly depended on the acid strength of the support material. The Pd-supported protonated niobium oxide nanosheet catalyst (Pd/HNb3O8-NS) with remarkably enhanced acidity was superior to layered Pd/KNb3O8 or Pd/HNb3O8 to promote the reaction. Hydrogen peroxide decomposition testing revealed that, although HNb3O8 was comparable to its exfoliated counterpart, HNb3O8-NS, in suppressing hydrogen peroxide decomposition without hydrogen, HNb3O8 was virtually ineffective in preventing hydrogen peroxide hydrogenation in the presence of hydrogen. However, compared with HNb3O8, HNb3O8-NS was found to be still effective at suppressing hydrogen peroxide hydrogenation. The different efficiency observed between HNb3O8 and HNb3O8-NS in the prevention of hydrogen peroxide hydrogenation implies that use of a highly acidic support is advantageous to effectively suppress faster and therefore more unfavorable hydrogen peroxide hydrogenation compared with decomposition. This result clearly demonstrates that the highly acidic HNb3O8 nanosheet can serve as an efficient solid acid support for direct synthesis of hydrogen peroxide from hydrogen and oxygen.  相似文献   

10.
Currently, less favorable C=O hydrogenation and weak concerted acid catalysis cause unsatisfactory catalytic performance in the upgrading of biomass-derived furfurals (i.e., furfural, 5-methyl furfural, and 5-hydroxymethyl furfural) to ketones (i.e., cyclopentanone, 2,5-hexanedione, and 1-hydroxyl-2,5-hexanedione). A series of partially oxidized MAX phase (i.e., Ti3AlC2, Ti2AlC, Ti3SiC2) supporting Pd catalysts were fabricated, which showed high catalytic activity; Pd/Ti3AlC2 in particular displayed high performance for conversion of furfurals into targeted ketones. Detailed studies of the catalytic mechanism confirm that in situ hydrogen spillover generates Frustrated Lewis H+−H pairs, which not only act as the hydrogenation sites for selective C=O hydrogenation but also provide acid sites for ring opening. The close intimate hydrogenation and acid sites promote bifunctional catalytic reactions, substantially reducing the reported minimum reaction temperature of various furfurals by at least 30–60 °C.  相似文献   

11.
Cobalt, copper, and nickel ferrite spinel nanoparticles have been synthesized by using a combination of sonochemical treatment and combustion. The magnetic nanoparticles have been used as supports to prepare ~4 wt% palladium catalysts. The ferrites were dispersed in an ethanolic solution of Pd(II) nitrate by ultrasonication. The palladium ions were reduced to metallic Pd nanoparticles, which were then attached to the surface of the different metal oxide supports. Thus, three different catalysts (Pd/CoFe2O4, Pd/CuFe2O4, Pd/NiFe2O4) were made and tested in the hydrogenation of 2,4-dinitrotoluene (DNT). A possible reaction mechanism, including the detected species, has been envisaged based on the results. The highest 2,4-diaminotoluene (TDA) yield (99 n/n%) has been achieved by using the Pd/NiFe2O4 catalyst. Furthermore, the TDA yield was also reasonable (84.2 n/n%) when the Pd/CoFe2O4 catalyst was used. In this case, complete and easy recovery of the catalyst from the reaction medium is ensured, as the ferrite support is fully magnetic. Thus, the catalyst is very well suited for applicationy in the hydrogenation of DNT or other aromatic nitro compounds.  相似文献   

12.
A comparative study of the catalytic characteristics of monometallic Pd/α-Al2O3 and bimetallic Pd–Zn/α-Al2O3catalysts in the liquid-phase hydrogenation of structurally different substituted alkynes (terminal and internal, symmetrical and asymmetrical) was carried out. It was established that an increase in the reduction temperature from 200 to 400 and 600°C led to a primary decrease in the activity of Pd–Zn/α-Al2O3 due to the formation and agglomeration of Pd1–Zn1 intermetallic nanoparticles. The Pd–Zn/α-Al2O3 catalyst containing Pd1–Zn1 nanoparticles exhibited increased selectivity to the target alkene formation, as compared with that of Pd/α-Al2O3. Furthermore, the use of the Pd–Zn/α-Al2O3 catalyst made it possible to more effectively perform the kinetic process control of hydrogenation because the rate of an undesirable complete hydrogenation stage decreased on this catalyst.  相似文献   

13.
Hydrogenation reactions of alkenes (cyclohexene, ethyl acrylate, styrene and 1,5-cyclooctadiene) and aromatic compounds (o-, m- and p-xylene) were carried out in order to examine the activity of palladium-loaded surface-oxidized diamond (Pd/O-Dia) catalyst in liquid-phase hydrogenation. The catalytic performance was compared to commercial palladium-loaded activated carbon (Pd/C) catalyst. The catalyst activities were evaluated by conversions of reactants and H2 uptake rates in the early stage of the reaction. In all the hydrogenation reactions of alkenes and aromatic compounds, the activity of Pd/O-Dia was almost the same as or slightly higher than that of Pd/C. Dispersion of Pd metal was measured by a CO-pulsed adsorption technique and TEM observations of the catalysts. Pd dispersions were on the same order of magnitude according to the CO-pulsed adsorption technique, although the Pd/C catalyst had a higher surface area (718 m2/g) than that of Pd/O-Dia (23 m2/g). The Pd particle sizes on O-Dia measured by TEM observation were slightly smaller than those on the activated carbon. Such highly dispersed Pd particles on O-Dia would contribute to higher activity for the hydrogenation reaction of alkenes and aromatic compounds.  相似文献   

14.
A one-pot reaction was performed to produce oxygen-free saturated hydrocarbons via the catalytic deoxygenation and hydrogenation of waste soybean oil over a hybrid catalyst (Pd/C and NiO/γ-Al2O3). We utilized in situ hydrogen generated from a reforming reaction of glycerol, a byproduct of triglyceride hydrolysis, for the one-pot reaction to produce hydrocarbons. When NiO/γ-Al2O3 (2 g) was used along with Pd/C (1 g), most of the unsaturated free fatty acids (FFAs) were hydrogenated into saturated FFAs, and the percentage of desirable hydrocarbons in the liquid product increased, in contrast to the case when only Pd/C (1 g) was used. This result means that using a hybrid catalyst is better for promoting the catalytic deoxygenation reaction than increasing the degree of loading of Pd/C, and suggests that it should be possible to decrease the amount of precious metal catalysts to be used for deoxygenation reaction.  相似文献   

15.
The applicability of elemental phosphorus as a modifier of palladium catalysts for hydrogenation was demonstrated, and the conditions for the synthesis of nanoparticles that are highly efficient in hydrogenation catalysis were optimized. The modifying effect of elemental phosphorus depends on the P/Pd ratio; it is associated with changes in the catalyst dispersity and the nature of the formed nanoparticles containing various palladium phosphides (PdP2, Pd5P2, and Pd6P) and Pd(0) clusters. The main stages of the formation of palladium catalysts for hydrogenation were determined, and a model of an active catalyst, in which the Pd6P phosphide is the core of a nanoparticle and Pd(0) clusters form a shell, was proposed.  相似文献   

16.

Aluminum suspensions with different properties were prepared and characterized by UV–Vis spectra, BET, XRD and NH3-TPD. A layer of Al2O3 was coated onto the cordierite monolith by sol–gel method. Pd/Al2O3/cordierite monolith catalysts with the same Pd loading and particle size were prepared, and tested by nitrobenzene hydrogenation under solvent-free conditions. The adsorption of nitrobenzene on acid sites might be the primary effect under the reaction conditions, and a good linear relationship between hydrogenation rate and the acid content of the Al2O3 layer was observed. Furthermore, the stronger acid sites were responsible for the lower aniline selectivity.

  相似文献   

17.
Phase composition and surface layer state of the Pd–P hydrogenation catalyst formed at various P/Pd ratios from Pd(acac)2 and white phosphorus in a hydrogen atmosphere were determined. Palladium on the catalyst surface is mainly in two chemical states: as Pd(0) clusters and as palladium phosphides. As the P/Pd ratio increases, the fraction and size of palladium clusters decrease, and also the phase composition of formed palladium phosphides changes: Pd3P0.8 → Pd5P2 → PdP2. The causes of the modifying action of phosphorus on the properties of palladium catalysts for hydrogenation of unsaturated compounds were considered.  相似文献   

18.
Metal–organic frameworks (MOFs) have recently been identified as versatile sacrificing templates to construct functional nanomaterials for heterogeneous catalysis. Herein, we report a thermal transformation strategy to directly fabricate metal Pd nanoclusters inlaid within a ZrO2@nitrogen‐doped porous carbon (Pd/ZrO2@CN) composite using Pd@NH2‐UiO‐66(Zr) as a precursor that was pre‐synthesized by a one‐pot hydrothermal method. The developed Pd/ZrO2@CN as a robust catalyst delivered remarkable stability and activity to the catalytic hydrogenation of 2,3,5‐trimethylbenzoquinone (TMBQ) to 2,3,5‐trimethylhydroquinone (TMHQ), a key reaction involved in vitamin E production. The hydrogenation was carried out at 110 °C with 1.0 MPa H2, and it resulted in 98% TMHQ yield as the sole product over five consecutive cycles, outperforming the analogue Pd/ZrO2@C without nitrogen doping templated from Pd@UiO‐66(Zr). The excellent catalytic properties of Pd/ZrO2@CN likely originated from the highly stable ultrafine Pd nanoclusters inlaid within ZrO2@CN matrix on account of the strong interaction between N and Pd, as well as on the Lewis acidity of ZrO2, which was beneficial to the hydrogenation.  相似文献   

19.
A possibility of using a ionic liquid, 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6), as a reaction medium in the liquid-phase hydrogenation of 1,4-diacetoxybut-2-yne was examined. Two types of catalysts were studied: Pd(10%)/C and the palladium-containing catalytic system based on the biopolymer chitosan supported on silica gel (Pd(1%)/chitosan/SiO2). The data obtained indicate high selectivity of hydrogenation of 1,4-diacetoxybut-2-yne to cis-1,4-diacetoxybut-2-ene under selected conditions.  相似文献   

20.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号