首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nano-sized nickel ferrite (NiFe2O4) and cobalt ferrite particles (CoFe2O4) were successfully synthesized using a hydrothermal method. Techniques of X-ray diffraction, scanning electron microscope, Fourier transform infrared spectrometer, energy dispersive X-ray spectroscopy, vibrating sample magnetometer and transmission electron microscope have been used to characterize and study the as-synthesized NiFe2O4 and CoFe2O4 products. The results showed that the average size of the nickel and cobalt ferrite nanoparticles is smaller than 10 and 100 nm, respectively. The results of magnetic measurement showed that the synthesized NiFe2O4 and CoFe2O4 nanoparticles were superparamagnetic and soft ferromagnetic materials, respectively. Study of adsorption behavior showed that these nanoparticles can act as a good adsorbent for removing Pb2+.  相似文献   

2.
The applicability of elemental phosphorus as a modifier of palladium catalysts for hydrogenation was demonstrated, and the conditions for the synthesis of nanoparticles that are highly efficient in hydrogenation catalysis were optimized. The modifying effect of elemental phosphorus depends on the P/Pd ratio; it is associated with changes in the catalyst dispersity and the nature of the formed nanoparticles containing various palladium phosphides (PdP2, Pd5P2, and Pd6P) and Pd(0) clusters. The main stages of the formation of palladium catalysts for hydrogenation were determined, and a model of an active catalyst, in which the Pd6P phosphide is the core of a nanoparticle and Pd(0) clusters form a shell, was proposed.  相似文献   

3.
A comparative catalytic study of Pd–Ag bimetallic catalysts and the commercial Lindlar catalyst (Pd–Pb/CaCO3) has been carried out in the hydrogenation of phenylacetylene (PA) and diphenylacetylene (DPA). The Pd–Ag catalysts have been prepared using the heterobimetallic complex PdAg2(OAc)4(HOAc)4 supported on MgAl2O4 and aluminas (α-Al2O3 and γ-Al2O3). Physicochemical studies have demonstrated that the reduction of supported Pd–Ag complex with hydrogen results in homogeneous Pd–Ag nanoparticles. Equal in selectivity to the Lindlar catalyst, the Pd–Ag catalysts are more active in DPA hydrogenation. The synthesized Pd–Ag catalysts are active and selective in PA hydrogenation as well, but the unfavorable ratio of the rates of the first and second stages of the process makes it difficult to kinetically control the reaction. The most promising results have been obtained for the Pd–Ag2/α-Al2O3 catalyst. Although this catalyst is less active, it is very selective and allows efficient kinetic control of the process to be carried out owing to the fact that, with this catalyst, the rate of hydrogenation of the resulting styrene is much lower than the rate of hydrogenation of the initial PA.  相似文献   

4.
A magnetically separable NiFe2O4@GO–Pd composite (GO = graphene oxide) was successfully prepared by a facile one‐pot hydrothermal strategy. This new kind of hybrid material was fully characterized using powder X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, transmission electron microscopy and vibrating sample magnetometry. Structural characterizations confirmed the formation of NiFe2O4 and Pd nanocrystals, and the close anchoring between nanoparticles and GO sheets. Additionally, the as‐prepared NiFe2O4@GO–Pd nanocomposite was effectively employed in the palladium‐catalyzed Heck reaction in an ethanol–water system as a green solvent. The catalyst was completely recoverable with the simple application of an external magnetic field and with no obvious loss of catalytic activity even after six repeated cycles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A comparative study of the catalytic characteristics of monometallic Pd/α-Al2O3 and bimetallic Pd–Zn/α-Al2O3catalysts in the liquid-phase hydrogenation of structurally different substituted alkynes (terminal and internal, symmetrical and asymmetrical) was carried out. It was established that an increase in the reduction temperature from 200 to 400 and 600°C led to a primary decrease in the activity of Pd–Zn/α-Al2O3 due to the formation and agglomeration of Pd1–Zn1 intermetallic nanoparticles. The Pd–Zn/α-Al2O3 catalyst containing Pd1–Zn1 nanoparticles exhibited increased selectivity to the target alkene formation, as compared with that of Pd/α-Al2O3. Furthermore, the use of the Pd–Zn/α-Al2O3 catalyst made it possible to more effectively perform the kinetic process control of hydrogenation because the rate of an undesirable complete hydrogenation stage decreased on this catalyst.  相似文献   

6.
In this study, catalytic performance of nanoferrites NiFe2O4 and Ni0.3Zn0.7Fe2O4 is reported. Nickel–ferrite and mixed nickel–zinc ferrite were successfully synthesized by combustion reaction using a conical reactor with production of 10 g per batch. Crystallinity and purity or quantitative analysis of the catalyst were checked by using X-ray diffraction and energy dispersive X-ray analysis. Surface chemistry was examined via Fourier transform infrared (FTIR) analysis; N2 physisorption at 77 K was conducted to obtain textural properties of the catalyst; a thermogravimetric analysis, a scanning electron microscope and a transmission electron microscopy were used to check the thermal stability and morphology of the catalyst, respectively. The catalysts were used to convert soybean oil into biodiesel in a batch mode and the reaction mixture was analyzed using a pre-calibrated gas chromatograph (GC). The presence of a single-phase spinel structure in the synthesized nanoparticles was confirmed by the XRD results. The Ni0.3Zn0.7Fe2O4 had a lower surface area value of 71.5 m2g−1 and higher saturation magnetization value of 31.50 emu/g than sample NiFe2O4 which had 87.6 m2g−1 and 17.85 emu/g, respectively. Biodiesel yield of 94% was obtained with Ni0.3Zn0.7Fe2O4 and 49% was obtained with NiFe2O4. Better performance of Ni0.3Zn0.7Fe2O4 when compared to that of NiFe2O4 could be attributed to higher acidity of the former. Findings from this study suggest that the development of nickel-zinc ferrite nanoparticles as magnetic heterogeneous catalysts could provide an environmentally friendly platform for biodiesel production.  相似文献   

7.
The catalytic properties and nature of Ziegler-type Pd(Acac)2 and Pd(Acac)2PPh3 based catalysts are studied in the hydrogenation of unsaturated compounds. The causes of an extremum appearing in the dependence of the specific activity of the catalyst in styrene and phenylacetylene hydrogenation on the proportions of the starting components are considered. The increase in the specific activity of the Pd(Acac)2 + AlEt3 catalytic system in hydrogenation as a function of the Al/Pd ratio arises from an increase in the degree of dispersion of the microheterogeneous system, an increase in the fraction of reduced palladium, and changes in the nature of the ligand shell. The inhibiting effect is caused by triethylaluminum adsorption on palladium nanoparticles. Palladium nanoparticle models are suggested.  相似文献   

8.
The precursor nature effect on the state of the Pd–P surface layer in palladium catalysts and on their properties in the liquid-phase hydrogenation of chloronitrobenzenes under mild conditions has been investigated. A general feature of the Pd–P-containing nanoparticles obtained from different precursors and white phosphorus at P/Pd = 0.3 (PdCl2 precursor) and 0.7 (Pd(acac)2 precursor) is that their surface contains palladium in phosphide form (BE(Pd3d 5/2) = 336.2 eV and BE(Р2р) = 128.9 eV) and Pd(0) clusters (BE(Pd3d5/2) = 335.7 eV). Factors having an effect on the chemoselectivity of the palladium catalysts in chloronitrobenzenes hydrogenation are considered, including the formation of small palladium clusters responsible for hydrogenation under mild conditions.  相似文献   

9.
Nitroheterocyclic compounds were reduced in a classical reactor with an agitator equipped with a cell for fixed bed of catalyst. As catalysts were applied granular palladium catalysts (0.5% of Pd on -Al2O3 and 2% of Pd on granulated carbon). Anilines and 3-amino-2(1H)-pyridones were obtained in high yield at reduction of the appropriate nitro compounds, and the activity of the catalyst samples only slightly decreased. Yet aminopyrazoles and aminoimidazoles obtained by hydrogenation on palladium were very sensitive to the presence of air even as hydrochlorides. In the course of hydrogenation of nitropyrazoles and nitroimidazoles the activity of the catalyst markedly decreased.  相似文献   

10.
Phase composition and surface layer state of the Pd–P hydrogenation catalyst formed at various P/Pd ratios from Pd(acac)2 and white phosphorus in a hydrogen atmosphere were determined. Palladium on the catalyst surface is mainly in two chemical states: as Pd(0) clusters and as palladium phosphides. As the P/Pd ratio increases, the fraction and size of palladium clusters decrease, and also the phase composition of formed palladium phosphides changes: Pd3P0.8 → Pd5P2 → PdP2. The causes of the modifying action of phosphorus on the properties of palladium catalysts for hydrogenation of unsaturated compounds were considered.  相似文献   

11.
Samples of Pd/C and Pd–Ag/C, where C represents carbon nanofibers (CNFs), are synthesized by methane decomposition on a Ni–Cu–Fe/Al2O3 catalyst. The properties of Pd/CNF are studied in the reaction of selective hydrogenation of acetylene into ethylene. It is found that the activity of the catalyst in hydrogenation reaction increases, while selectivity decreases considerably when the palladium content rises. The obtained dependences are caused by the features of palladium’s interaction with the carbon support. At a low Pd content (up to 0.04 wt %) in the catalyst, the metal is inserted into the interlayer space of graphite and the catalytic activity is zero. It is established by EXAFS that the main share of palladium in catalysts of 0.05–0.1 wt % Pd/CNF constitutes the metal in the atomically dispersed state. The coordination environment of palladium atoms consists of carbon atoms. An increase in the palladium content in a Pd/CNF catalyst up to 0.3 wt % leads to the formation of highly dispersed (0.8–1 nm) Pd particles. The Pd/CNF samples where palladium is mainly in the atomically dispersed state exhibit the highest selectivity in the acetylene hydrogenation reaction. The addition of silver to a 0.1 wt % Pd/CNF catalyst initially probably leads to the formation of Pd–Ag clusters and then to alloyed Pd–Ag particles. An increase in the silver content in the catalyst above 0.3% causes the enlargement of the alloyed particles and the palladium atoms are blocked by a silver layer, which considerably decreases the catalytic activity in the selective hydrogenation of acetylene.  相似文献   

12.
The structure of Ga2O3–Al2O3 supports and Pd/Ga2O3–Al2O3 catalysts and the performance of these catalysts in liquid-phase acetylene hydrogenation have been investigated. The deposition of Ga(NO3)3 onto Al2O3 by impregnation followed by calcination of the impregnated support at 600°C yields γ-Ga2O3–Al2O3 solid solutions containing up to 50 wt % Ga2O3. X-ray diffraction characterization of model palladium catalysts and their temperature-programmed reduction with hydrogen have demonstrated that, while palladium in Pd/Ga2O3 is in the form of a Pd2Ga alloy, in the Pd/γ-Ga2O3–Al2O3 catalyst there is no direct interaction between PdО and Ga2O3 particles and palladium is in the monometallic state. The introduction of 10–20 wt % gallium oxide into Al2O3 lowers the activity of the supported palladium catalyst relative to that of the initial Pd/Al2O3 but increases the ethylene yield by enhancing the ethylene formation selectivity.  相似文献   

13.
The catalytic properties and nature of the nanoparticles forming in the system based on Pd(dba)2 and white phosphorus are reported. A schematic mechanism is suggested for the formation of nanosized palladium-based hydrogenation catalysts. The mechanism includes the formation of palladium nanoclusters via the interaction of Pd(dba)2 with the solvent (N,N-dimethylformamide) and substrate and the formation of palladium phosphide nanoparticles. The inhibiting effect exerted by elemental phosphorus on the catalytic process is due to the conversion of part of the Pd(0) into palladium phosphides, which are inactive in hydrogenation under mild conditions, and the formation of mainly segregated palladium nanoclusters and palladium phosphide nanoparticles. By investigating the interaction between Pd(dba)2 and white phosphorus in benzene, it has been established that the formation of palladium phosphides under mild conditions consists of the following consecutive steps: Pd(0) → PdP2 → Pd5P2 → Pd3P. It is explained why white phosphorus can produce diametrically opposite effects of on the catalytic properties of nanosized palladium-based hydrogenation catalysts, depending on the nature of the palladium precursor.  相似文献   

14.
Magnetic nanoparticles of NiFe2O4-Pd composites have been synthesized using a simple, low cost, sol-gel auto-combustion method. As-prepared samples were sintered at 800 ℃ for 6 h in order to develop the crystalline phase. X-ray diffraction confirmed the spinel structure of the ferrite samples. Structural morphology and size of the nanoparticles were evaluated using a field emission scanning electron microscope. Magnetic hysteresis loops were obtained at 300 and 100 K using a physical properties measurement system. The value of saturation magnetization was observed to decrease at the temperatures with the increase of Pd contents up to 5% but then a sudden rise in saturation magnetization was observed for the addition of 10% Pd in NiFe2O4.  相似文献   

15.
A catalyst in which Pd nanoparticles are supported on triangle-shaped La2O2CO3 nanosheets exposing predominantly the (001) planes (Pd/La2O2CO3-TNS; where TNS denotes triangular nanosheets) was prepared by a facile solvothermal method. The Pd/La2O2CO3-TNS catalysts exhibited excellent catalytic activity and recycling stability for hydrogenation of cinnamaldehyde to hydrocinnamaldehyde with turnover frequency of up to 41 238 h−1. This enhanced activity of Pd/La2O2CO3-TNS results from strong metal–support interactions. Structure analysis and characterization demonstrated that surface-oxygen-enriched La2O2CO3-TNS supports exposing (001) planes are beneficial to charge transfer between the Pd nanoparticles and triangle-shaped La2O2CO3 nanosheets and increase the electron density of Pd. Moreover, the modulated electronic states of the Pd/La2O2CO3-TNS catalysts can enhance the adsorption and activation of hydrogen to enhance the hydrogenation activity.  相似文献   

16.
A ruthenium (Ru) catalyst supported on magnetic nanoparticles (NiFe2O4) has been successfully synthesized and used for hydrogenation of alkynes at room temperature as well as transfer hydrogenation of a number of carbonyl compounds under microwave irradiation conditions. The catalyst shows excellent selectivity toward the desired products with very high yield even after five repeated uses.  相似文献   

17.
The structure and catalytic characteristics of a series of Pd–Cu/α-Al2O3 catalysts with Pd: Cu ratio varied from Pd1–Cu0.5 to Pd1–Cu4 were studied. The use of α-Al2O3 with a small surface area (Ssp = 8 m2/g) as a support made it possible to minimize the effect of diffusion on the catalytic characteristics and to study the structure of Pd–Cu nanoparticles by X-ray diffraction (XRD) analysis. The XRD analysis and transmission electron microscopy (TEM) data indicated the formation of uniform bimetallic Pd–Cu nanoparticles (d = 20–60 nm), whose composition corresponded to a ratio between the metals in the catalyst, and also the absence of monometallic Pd0 and Cu0 nanoparticles. The study of catalytic properties in the liquid-phase hydrogenation of diphenylacetylene (DPA) showed that the activity of the catalysts rapidly decreased with the Cu content increase; however, in this case, the yield of a desired alkene compound significantly increased. The selectivity of alkene formation on the catalysts with the ratios Pd: Cu = 1: 3 and 1: 4 was superior to the commercial Lindlar catalyst.  相似文献   

18.
Combination of the surfactant-free nonaqueous sol–gel approach with the microwave technique makes it possible to synthesize Fe3O4, CoFe2O4, MnFe2O4, and NiFe2O4 nanoparticles of about 5–6 nm and with high crystallinity and good morphological uniformity. The synthesis involves the reaction of metal acetates or acetylacetonates as precursors with benzyl alcohol at 170 °C under microwave irradiation of 12 min. Immersion of glass substrates in the reaction solution results in the deposition of homogeneous metal ferrite films whose thickness can be adjusted through the precursor concentration. If preformed nickel nanoparticles are used as a type of curved substrate, the ferrite nanoparticles coat the seeds and form core–shell structures. These results extend the microwave-assisted nonaqueous sol–gel approach beyond the simple synthesis of nanoparticles to the preparation of thin films on flat or curved substrates.  相似文献   

19.
The activity and stability of aluminum-palladium catalysts in the hydrogenation of aromatic hydrocarbons mixed with thiophene were studied. The catalysts were obtained by impregnation of γ-A2O3 with aqueous solutions of salts of palladium complexes. Preliminary sulfiding followed by oxidative activation of Pd/Al2O3 catalysts were found to favor the formation of such palladium state on the surface at which the hydrogenation of aromatic hydrocarbons in the presence of sulfur-containing impurities proceeds without a noticeable change in the activity with time. IR spectroscopy showed that the palladium metal surface fragments forming CO complexes with a characteristic absorption band at 1998 cm–1 are resistant to poisoning with sulfur-containing compounds in the hydrogenation of aromatic hydrocarbons.  相似文献   

20.
Pd–In/Al2O3 and Pd–In/MgAl2O4 catalysts prepared from dinuclear Pd–In acetate complexes were studied in the hydrogenation of alkyne compounds with different structures. The Pd–In catalysts demonstrate high selectivity in the hydrogenation of internal alkynes comparable with that of the Lindlar catalyst. Similar activity/selectivity characteristics are reached at a significantly lower Pd content. For terminal alkynes, the favorable effect of Indium introduction is considerably less pronounced. An analysis of the In effect on the selectivity and the ratio between the rates of the first and second hydrogenation steps suggests that the reaction selectivity is determined to a large extent by a thermodynamic factor (adsorption–desorption equilibrium between the reactants and the reaction products).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号