首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
煤热解过程中生成氮化物的研究   总被引:21,自引:8,他引:21  
使用管式反应器在600℃-900℃范围内考察了温度和煤种等对煤中氮热解转化成HCN和NH3的影响。实验结果表明:热解的温度越高,气相产物中的HCN和NH3的生成量越大;煤化程度越高,煤中氮转化为HCN的量越少;惰质组含量较高的煤样,热解生成的NH3较多。在这些实验的基础上,对煤种和惰质组含量对氮氧化物前驱体生成的影响进行了初步的探讨。  相似文献   

2.
煤岩有机显微组分热解过程中HCN和NH3生成规律的研究   总被引:1,自引:0,他引:1  
经等密度梯度离心分离,从褐煤、长焰煤、气煤和贫煤四种不同变质程度煤中获得了高纯度的有机显微组分。用石英管式反应器在600 ℃~900 ℃考察了煤岩有机显微组分热解过程中HCN和NH3的生成规律。实验结果表明,在显微组分热解过程中HCN主要是挥发分二次裂解的产物。在镜质组热解过程中,煤的变质程度越高,HCN的生成率越低,热解温度越高,HCN的生成率越高;同一种煤三种有机显微组分热解过程中,HCN的生成不仅与显微组分挥发分的质量分数有关,而且与显微组分中氮的存在形态有关,在较低温度热解时吡咯型氮质量分数高的煤样HCN的生成率较高。显微组分热解过程中NH3来自于挥发分的二次热裂解,与焦的热裂解有关,随煤变质程度增高,镜质组热解过程中NH3的收率降低;对同一种煤三种煤岩有机显微组分,由于其黏结性不同,含氮官能团和氢自由基的接触几率不同,生成NH3的能力也不同,惰质组的NH3生成率最高,壳质组最低;温度对NH3的生成也有影响,800 ℃NH3的生成率最高,惰质组NH3的生成率为11.8%,壳质组NH3的生成率为5.2%。  相似文献   

3.
对煤焦油中氮在惰性气氛中二次热解生成NOx前驱物HCN及NH3进行了研究。在两段炉固定床反应器上研究了四种煤样的焦油在二次热解过程中NOx前驱物HCN和NH3的释放规律,讨论了煤阶﹑温度以及灰分对焦油二次热解过程中HCN及NH3释放规律的影响,表明随着煤阶的增高,焦油中氮的质量分数减少,HCN和NH3的转化率也随之减少。随着二次热解温度的增高,HCN和NH3的转化率增加,在800 ℃~900 ℃HCN增幅最大,NH3的质量分数在900 ℃以后基本不变。煤中灰分的存在能减少氮在焦油中的质量分数,导致焦油二次热解过程中HCN和NH3的转化率下降。  相似文献   

4.
选择3种典型煤种为研究对象,通过脱灰和添加含Fe、Ca、Na等金属盐,研究煤热解过程中金属离子对含氮气相产物析出特性的影响以及与煤种和温度的交互关联。结果表明,脱灰煤HCN和NH3的产率均比原煤样下降,而随温度的升高HCN的产率逐渐增大,NH3的产率则先增加后减小,在800℃有最大值。金属离子对不同变质程度煤的含氮气相产物析出的催化作用不同;Fe和Na抑制中等变质程度煤HCN的析出,而对低变质程度煤起促进作用,Ca则对HCN的析出均有一定的促进作用。而对于NH3的形成,3种离子均对中等变质程度煤有抑制作用,而对低变质程度的煤则有促进作用。不同金属离子对HCN和NH3析出的催化作用均有一定的范围。煤热解时含氮气相产物的析出是煤中固有多种金属离子共同作用的结果。  相似文献   

5.
煤燃烧过程生成氮氧化物前驱体的研究   总被引:5,自引:1,他引:5  
对煤中氮在燃烧条件下生成NOx前驱体(HCN、NH3)进行了研究。实验采用石英玻璃管流化床反应系统,测定了神木煤、澳大利亚烟煤、澳大利亚褐煤在400 ℃~900 ℃HCN、NH3的生成,用离子色谱测定了HCN、NH3的生成量,用差热分析测定了三种煤的燃烧峰温及起始燃烧温度。实验结果表明,在燃烧条件下煤中氮转化为HCN、NH3的比例很高,这一释出过程伴随着煤燃烧过程而发生; 在400 ℃~500 ℃燃烧时HCN、NH3的生成量占煤中总氮质量分数的50%~70%,无论是煤挥发分还是半焦中的氮都在此条件下转化生成了HCN、NH3, 这一实验规律与热解条件的实验结果不同。煤样在更高的温度下燃烧(>700 ℃)时,气体产物中的HCN、NH3的质量分数很少,这是HCN、NH3进一步氧化生成了NOx的缘故。  相似文献   

6.
以平朔煤的三种有机显微组分为研究对象,使用石英玻璃管式反应器,在600℃~900℃范围内考察了程序升温热解和快速升温热解过程中HCN形成与释放的规律。实验结果表明,热解反应温度、升温速率和显微组分类型对HCN的释放均有较大的影响。热解温度越高,HCN在三种显微组分气相产物中的生成量越大;热解温度为900 ℃时,稳定组的HCN收率较大,热解温度为600 ℃时,镜质组的HCN收率较高,这和不同显微组分中氮的赋存形态有关;与慢速升温热解相比,快速升温热解有利于HCN的释放;与原煤热解过程中HCN的收率相比,显微组分在原煤中的百分含量不是HCN收率的权重系数,显微组分热解生成HCN的过程中有协同效应。  相似文献   

7.
秸秆含氮模型化合物热解氮转化规律的实验研究   总被引:1,自引:0,他引:1  
采用TG-FTIR联用实验系统,在氩气氛围下研究了含氮模型化合物甘氨酸酐热解失重特性以及NOx前驱物的释放特性;研究了K、Ca、Fe金属盐对甘氨酸酐热解氮转化的影响。结果表明,在20、40、60℃/min升温速率下,NH3、HCN、HNCO为甘氨酸酐热解的主要气相含氮产物,其中,NH3产率最大,HCN次之,HNCO生成量最小;随升温速率增加,TG失重曲线右移,热解剩余物减少;且HCN和HNCO的产率增加,NH3产率降低;K、Ca、Fe盐均对甘氨酸酐热解氮转化具有催化作用,其中,K、Ca有利于促进NH3、HCN的生成,Fe对HCN的生成具有促进作用,但对NH3的生成起到抑制作用。  相似文献   

8.
升温速率对氨基酸裂解生成含氮气体的影响研究   总被引:1,自引:0,他引:1  
为进一步阐明卷烟烟气中含氮有害气体的形成机理,以甘氨酸、天冬酰胺和天冬氨酸为研究对象,采用TG-FTIR技术对其在不同升温速率下热解时含氮气体的释放特性进行了研究。结果表明:(1)随着升温速率增加,三种氨基酸TG和DTG曲线各个失重阶段的起始和终止温度向高温侧移动;(2)氨基酸结构不同,HCN、NH3、HNCO的生成温度及生成量不同;(3)增加升温速率,三种氨基酸热解过程中HCN、NH3、HNCO的生成量均增加,但三种氨基酸氮转化的选择性不尽相同。甘氨酸和天冬酰胺热解过程中氮主要转化为NH3,而天冬氨酸在低升温速率下热解时,氮主要转化为HCN和NH3,在高升温速率下主要生成HNCO。  相似文献   

9.
将卟唑在650℃,12MPa焦化条件下所得产物作为含氮模型化合物,在固定床反应器中研究了该模型化合物热解及燃烧过程中氮的逸出行为。结果表明,热解温度低于900℃时燃料氮主要停留在半焦中,HCN和NH3只占很小的部分;催化热解使HCN的量相对减少,NH3相对增加;半焦的反应性和燃烧条件影响半焦氮氧化生成NO,半焦的反应性越高,半焦氮对于NO的转化率越低;低温下催化剂使半焦氮对于NO的转化率升高,而高温下则相反。催化剂对于半焦燃烧时NO排放的影响还与半焦的性质有关,同一催化剂在相同的燃烧条件下对不同半焦燃烧的NO释放有不同的影响,预示半焦的性质和催化剂之间也有一定的匹配性。  相似文献   

10.
煤气化过程中生成氮化物的研究   总被引:12,自引:5,他引:12  
对煤中N在气化条件下的转化进行了研究,详细考察了在CO2和水蒸气气氛中转化生成HCN和NH3的过程,并对热解和气化条件下煤中N转化规律的差别进行了讨论。实验结果表明:在气化条件下煤中N转化为HCN和NH3的量随温度的升高而增大,在水蒸气气氛下HCN和NH3的生成量明显大于热解条件的实验结果。在本实验条件下半焦中N含量的15%-20%可以转化为NH3,水蒸汽气氛条件下NH3生成量的提高主要来源于半焦的气化反应过程。  相似文献   

11.
Rapid pyrolysis of 6 biomass/coal blends (1:4, wt) including rice straw + bituminous (RS + B), rice straw + anthracite (RS + A), chinar leaves + bituminous (CL + B), chinar leaves + anthracite (CL + A), pine sawdust + bituminous (PS + B), and pine sawdust + anthracite (PS + A) was carried out in a high-frequency magnetic field based furnace at 600-1200 °C. The reactor could not only achieve high heating rates of fuel samples but also make biomass and coal particles contact well; secondary reactions of primary products during rapid pyrolysis can also be efficiently reduced. By comparing nitrogen distributions in products of blends (experimental values) with those of the sums of individual biomass and coal (weighted values), nitrogen conversion characteristics under rapid pyrolysis of biomass/coal blends were investigated. Results show that, biomass particles in blends lead to higher experimental char-N yields than the weighted values during rapid pyrolysis of biomass/anthracite blends. The decreased heating rates of both biomass and coal particles caused by the low packing densities of biomass may be the reason. For blends of CL + B in which packing density of chinar leaves is high, and for PS + B during pyrolysis of which melting and shrinkage happen to pine sawdust, both biomass and coal particles can obtain high heating rates, synergies can be found to promote nitrogen release from fuel samples and decrease char-N yields under all the conditions. But the low fluidity and not easily collapsed carbon skeletons of rice straw make the heating rates of rice straw and bituminous particles in RS + B lower than those of CL + B and PS + B, and weaker synergies can be found from char-N yields of RS + B. The synergies can obviously be found to decrease the (NH3 + HCN)-N yields and make more nitrogen convert to N2 except for those of several low-temperature conditions (600-700 °C). Under the low-temperature (600-700 °C) condition, synergies make molar ratios of HCN-N/NH3-N higher than those of the weighted values.  相似文献   

12.
This study aims to experimentally characterize the carbonaceous and nitrogenous species, from the flash pyrolysis of millet stalks and polyethylene plastic bags, using the device of the tubular kiln, coupled to two gas analyzers: Analyzer Fourier Transform Infrared (FTIR) and an analyzer Infrared Non-Dispersive (IRND). Gaseous products analyzed are: CH4, C2H2, C2H4, C3H8, C6H6, CO, CO2, NO2, NO, N2O, HCN and NH3. Whatever the temperature of thermal degradation, the pyrolysis shows us that in terms of mass:
  • •For the millet stalks, the gaseous compounds are formed mainly CO and CO2 to the carbonaceous species, HCN and NH3, for the nitrogenous species analyzed;
  • •As regards the polyethylene bags, hydrocarbons for carbonaceous species and HCN, NH3 and NO2 for the nitrogenous species, are most abundant.
In addition, the results suppose that in our experimental conditions, the hydrocarbon which is involved primarily in the formation of CO is ethylene C2H4. At the end of this characterization, we determined the rate of carbon and nitrogen found in the volatile gas. With millet stalks we have about 45% of volatile carbon and 15% of the nitrogen of fuel that are found in gaseous products. The results obtained with the plastic bags give 68% carbon and 15% nitrogen found in the nitrogenous species analyzed.  相似文献   

13.
Prolonged heating of formamide (HCONH2) at 185°C or 220°C produces a black insoluble product. The FT-IR spectroscopy and the X-ray photoelectron spectroscopy (XPS) suggest that the product has the chemical structure of a polymer of hydrocyanic acid: (HCN)x. The pyrolysis of (HCN)x prepared from formamide produces a large amount of gaseous HCN in a wide range of temperatures together with ammonia (NH3) and isocyanic acid (H─N─C═O).

During the thermal decomposition of formamide to produce (HCN)x, the volatile products evolved were monitored with gas phase infrared spectroscopy. At 185°C, the gaseous product released were CO2, CO and NH3 while at 220°C, also HCN was detected. In both cases, a white sublimate was collected in the upper part of the reaction vessel. It consists of ammonium carbamate and its hydrolysis products ammonium carbonate and hydrogen carbonate. It is therefore possible to synthesize the polymer of hydrocyanic acid (HCN)x starting from formamide avoiding to handle the dangerous hydrocyanic acid.  相似文献   

14.
V2O3 nanopowder with spherical particles was prepared by reducing pyrolysis of the precursor, (NH4)5[(VO)6(CO3)4(OH)9]·10H2O, in H2 atmosphere. The thermolysis process of the precursor in a H2 flow was investigated by thermogravimetric analysis and differential thermal analysis. The results indicate that pure V2O3 forms at 620°C and crystallizes at 730°C. The effects of various reductive pyrolysis conditions on compositions of V2O3 products were studied. Scanning electron micrographs show that the particles of the V2O3 powder obtained at 650°C for 1 h are spherical about 30 nm in size with more homogeneous distribution. Experiments show that nanopowder has larger adsorption capacity to gases and is more easily reoxidized by air at room temperature than micropowder. Differential scanning calorimetry experiment indicates that the temperature of phase transition of nano-V2O3 powder is −119.5°C on cooling or −99.2°C on heating. The transition heats are −12.55 J g−1 on cooling and 11.42 J g−1 on heating, respectively.  相似文献   

15.
Single-domain manganese ferrite nanoparticles have been synthesized with narrow particle size distribution using the combustion technique. Influence of fuel ratios on the as-prepared powders were characterized by XRD, SEM, VSM, N2 adsorption at −196 °C and conversion of cyclohexene at 200–400 °C. Ratios of fuel to cations were maintained variously at 0.0, 0.67, 1.33 and 2.67.The fuel to cations ratio of 2.67 gives better yield in the formation of nanocrystalline Mn ferrite and single-domain particles with a narrow range of size distribution. Maximum magnetization and coercivity values of the investigated ferrite are also greater for the ratio of 2.67. These values measured at room temperature are found to be 68.58 emu/g and 62.57 Oe, respectively. The BET surface area of the investigated solids was found to decrease by increasing the ratio between fuel and cations due to increasing the flame temperature. However, this treatment resulted in a significant increase in catalytic activity of the as-synthesized solids. All solids investigated behaved as dehydrogenation catalysts. The change in fuel/cations ratios did not alter the mechanism of dehydrogenation of cyclohexene, but increased the concentration of active sites involved in the catalyzed reaction.  相似文献   

16.
The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere.  相似文献   

17.
Chlorine content in agricultural straw is high, and HCl formation during straw combustion is a challenging problem. The relationship between HCl and the formation of NOx and N2O is important and unclear. Effect of HCl in atmosphere on nitrogen transfer during wheat straw and cotton stalk pyrolysis was performed using a thermogravimetric analyzer coupled with a Fourier transform infrared spectrometer. Pyrolysis of polyvinyl chloride supplies HCl. The pathway of nitrogen transfer in the presence of HCl was studied. The results show that in the presence of HCl, the temperature corresponding to NH3 starting release during wheat straw pyrolysis increases, and those of HCN and HNCO reduce. HCl inhibits the conversion of straw–N into NH3, however, favors the transformation of straw nitrogen into HCN and HNCO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号