首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
pH‐Responsive homopolymers and copolymers with naphthoic acid side groups were synthesized via base‐assisting living cationic polymerization. To this end, the feasibility of the living cationic polymerization of ethyl 6‐[2‐(vinyloxy)ethoxy]‐2‐naphthoate (EVEN) was first examined using a base‐assisting initiating system. Et1.5AlCl1.5 as a Lewis acid catalyst induced the living cationic polymerization of EVEN in the presence of ethyl acetate or 1,4‐dioxane in CH2Cl2 at 0 °C. In contrast, the use of naphthoxyethyl vinyl ether (NpOVE), which is a nonsubstituted counterpart, resulted in a poorly controlled polymerization under these conditions. The presence of the carboxy ester was most likely critical in preventing side reactions. A subsequent alkaline hydrolysis of the side‐chain esters quantitatively yielded a carboxy‐containing polymer. Aqueous solutions of this polymer underwent pH‐driven phase separation at pH 7.0. Well‐defined random and block copolymers were also prepared with various functional segments, and their stimuli‐responsive behaviors were investigated in terms of solution transmittance and aggregate size. Block copolymers containing two different pH‐responsive segments formed micelle‐like structures between the two phase‐separated pH values, and dual stimuli‐responsive copolymers containing a pH‐responsive polyacid segment and a thermosensitive segment self‐assembled in the water in response to both the pH and temperature. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5239–5247  相似文献   

2.
Cationic cyclopolymerization of 2‐methyl‐5,5‐bis(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a divinyl ether with a cyclic acetal group, was investigated with the HCl/ZnCl2 initiating system in toluene and methylene chloride at ?30 °C. The reaction proceeded quantitatively to give gel‐free, soluble polymers in organic solvents. The number‐average molecular weight (Mn) of the polymers increased in direct proportion to monomer conversion, and further increased on addition of a fresh monomer feed to the almost completely polymerized reaction mixture, indicating that the polymerization proceeded in living/controlled manner. The contents of the unreacted vinyl groups in the produced soluble polymers were less than ~3 mol %, and therefore, the degree of cyclization was determined to be ~97%. In contrast, the pendant cyclic acetal groups remained intact in the polymers under the present cationic polymerization conditions. These facts show that cyclopolymerization of 1 almost exclusively occurred and the poly(vinyl ether)s with the cyclized repeating units and cyclic pendant acetal rings were obtained. Glass transition temperature (Tg) and thermal decomposition temperature (Td) of poly( 1 ) (Mn = 7870, Mw/Mn = 1.57) were found to be 166 and 338 °C, respectively, indicating that poly( 1 ) had high Tg and high thermal stability. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 952–958, 2010  相似文献   

3.
Poly(benzyl‐L ‐glutamate) (PBLG) macromonomers were synthesized by N‐carboxyanhydride (NCA) polymerization initiated with 4‐vinyl benzylamine. MALDI‐ToF analysis confirmed the presence of styrenic end‐groups in the PBLG. Free‐radical and RAFT polymerization of the macromonomer in the presence of divinyl benzene produced star polymers of various molecular weights, polydispersity, and yield depending on the reaction conditions applied. The highest molecular weight (Mw) of 10,170,000 g/mol was obtained in a free‐radical multibatch approach. It was shown that the PBLG star polymers can be deprotected to obtain poly(glutamic acid) star polymers, which form water soluble pH responsive nanoparticles. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

4.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

5.
Partially fluorinated poly(vinyl ether)s with C4F9 and C6F12H groups in the side chain were synthesized via living cationic polymerization in the presence of an added base in a fluorine‐containing solvent, dichloropentafluoropropanes. For comparison, the polymerization of vinyl ether monomers with C2F5 and C6F13 groups and nonfluorinated monomers were also carried out. The characterization of the product polymers using size exclusion chromatography with a fluorinated solvent as an eluent indicated that all polymers had narrow molecular weight distributions (Mw/Mn ~ 1.1). Interestingly, the moderately fluorinated polymers with C4F9 exhibited upper critical solution temperature‐type phase separation in various organic solvents with wide‐ranging polarities, whereas highly fluorinated polymers with C6F13 are insoluble in nonfluorinated solvents. Polymers with C4F9 groups exhibited temperature dependent solubility transitions not only in common organic solvents (e.g., toluene, chloroform, tetrahydrofuran, and acetone) but also in perfluoro solvents [e.g., perfluoro(methylcyclohexane) and perfluorodecalin]. On the other hand, the solubility of polymers with C6F12H showed completely different from that of polymers with C6F13, despite their similar fluorine content. In addition, various types of fluorinated block copolymers were prepared in a living manner. The block copolymers with a thermosensitive fluorinated segment underwent temperature‐induced micellization and sol–gel transition in various organic solvents. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
In this work, we examined the synthesis of novel block (co)polymers by mechanistic transformation through anionic, cationic, and radical living polymerizations using terminal carbon–halogen bond as the dormant species. First, the direct halogenation of growing species in the living anionic polymerization of styrene was examined with CCl4 to form a carbon–halogen terminal, which can be employed as the dormant species for either living cationic or radical polymerization. The mechanistic transformation was then performed from living anionic polymerization into living cationic or radical polymerization using the obtained polymers as the macroinitiator with the SnCl4/n‐Bu4NCl or RuCp*Cl(PPh3)/Et3N initiating system, respectively. Finally, the combination of all the polymerizations allowed the synthesis block copolymers including unprecedented gradient block copolymers composed of styrene and p‐methylstyrene. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 465–473  相似文献   

7.
Cationic polymerization of tetrahydrofuran (THF) and epichlorohydrin (ECH) was performed with peroxy initiators synthesized from bis (4,4′‐bromomethyl benzoyl peroxide (BBP) or bromomethyl benzoyl t‐butyl peroxy ester (t‐BuBP) and AgSbF6 or ZnCl2 system at 0 °C to obtain the poly(THF‐b‐ECH) macromonomeric peroxy initiators. Kinetic studies were accomplished for poly(THF‐b‐ECH) initiators. Poly(THF‐b‐ECH‐b‐MMA) and poly(THF‐b‐ECH‐b‐S) block copolymers were synthesized by bulk polymerization of methyl methacrylate (MMA) and styrene (S) with poly(THF‐b‐ECH) initiators. The quantum chemical calculations for the block copolymers, the initiating systems of the cationic polymerization of THF and ECH were achieved using HYPERCHEM 7.5 program. The optimized geometries of the polymers were investigated with the quantum chemical calculations. Poly(THF‐b‐ECH) initiators having peroxygen groups were used for graft copolymerization of polybutadien (PBd) to obtain poly(THF‐b‐ECH‐g‐PBd) crosslinked graft copolymers. The graft copolymers were investigated by sol‐gel analysis. Swelling ratio values of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by FTIR, 1H NMR, GPC, SEM, TEM, and DSC techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2896–2909, 2010  相似文献   

8.
The first synthesis of asymmetric dendritic‐linear‐dendritic ABC block copolymers, that contain a linear B block and dissimilar A and C dendritic fragments is reported. Third generation poly(benzyl ether) monodendrons having benzyl alcohol moiety at their “focal” point were activated by quantitative titration with organometallic anions and the resulting alkoxides were used as initiators in the “living” ring‐opening polymerization of ethylene oxide. The reaction proceeded in controlled fashion at 40–50 °C affording linear‐dendritic AB block copolymers with predictable molecular weights (Mw = 6000–13,000) and narrow molecular weight distributions (Mw/Mn = 1.02–1.04). The propagation process was monitored by size‐exclusion chromatography with multiple detection. The resulting “living” copolymers were terminated by reaction either with HCl/tetrahydrofuran or with a reactive monodendron that differed from the initiating dendron not only in size, but also in chemical composition. The asymmetric triblock copolymers follow a peculiar structure‐induced self‐assembly pattern in block‐selective solvents as evidenced by size‐exclusion chromatography in combination with multi‐angle light scattering. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5136–5148, 2007  相似文献   

9.
We report here a novel direct method for the syntheses of primary aminoalkyl methacrylamides that requires mild reagents and no protecting group chemistry. The reversible addition‐fragmentation chain transfer polymerization (RAFT) of the aminoalkyl methacrylamide revealed to be highly efficient with 4‐cyanopentanoic acid dithiobenzoate (CTP) as chain transfer agent and 4,4′‐azobis(4‐cyanovaleric acid) (ACVA) as initiator. Cationic amino‐based homopolymers of reasonably narrow polydispersities (Mw/Mn < 1.30) and predetermined molecular weights were obtained without recourse to any protecting group chemistry. A range of block and random copolymers were also synthesized via the RAFT process. The homopolymers and copolymers were characterized by aqueous conventional and triple detection gel permeation chromatography systems. Furthermore, the primary amine‐based methacrylamide monomers and polymers revealed to be highly stable both with the primary amino group in the protonated and deprotonated form. We have also demonstrated that stabilized gold nanoparticles can be generated with the RAFT‐synthesized amine‐based polymers via a photochemical process. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4984–4996, 2008  相似文献   

10.
Well‐defined D ‐glucose‐containing glycopolymers, poly(3‐O‐methacryloyl‐1,2 : 5,6‐di‐O‐isopropylidene‐D ‐glucofuranose) (PMAIpGlc), and diblock copolymers of PMAIpGlc with poly(1,1‐dihydroperfluorooctyl methacrylate) (PFOMA) were synthesized by living anionic polymerization in THF at ?78 °C with 1,1‐diphenylhexyllithium in the presence of lithium chloride. The resulting polymers were found to possess predictable molecular weights and very narrow molecular weight distributions (MWD, Mw/Mn ≤ 1.16). Removal of the acetal protective groups from the protected glycopolymer block copolymer was carried out using 90% trifluoroacetic acid at room temperature, yielding a hydrophilic block copolymer with pendant glucose moieties. Both protected (lipophilic/CO2‐philic) and deprotected (hydrophilic/CO2‐philic) fluorocopolymers were proved to be CO2 amphiphiles. Their solubility in CO2 was heavily influenced by the amphiphilic structure, such as the copolymer compositions and the polarities of sugar block. Light‐scattering studies showed that, after removal of the protective groups, the deprotected block copolymer formed aggregate structures in liquid CO2 with an average micellar size of 27 nm. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3841–3849, 2001  相似文献   

11.
The recently introduced procedure of quantitatively switching thiocarbonyl thio capped (RAFT) polymers into hydroxyl terminated species was employed to generate narrow polydispersity (PDI ≈ 1.2) sulfur‐free poly(styrene)‐block‐poly(ε‐caprolactone) polymers (26,000 ≤ Mn/g·mol?1 < 45,000). The ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL) was conducted under organocatalysis employing 1,5,7‐triazabicyclo[4.4.0]dec‐5‐ene (TBD). The obtained block copolymers were thoroughly analyzed via size exclusion chromatography (SEC), NMR, as well as liquid adsorption chromatography under critical conditions coupled to SEC (LACCC‐SEC) to evidence the block copolymer structure and the efficiency of the synthetic process. The current contribution demonstrates that the RAFT process can serve as a methodology for the generation of sulfur‐free block copolymers via an efficient end group switch. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
Living cationic polymerization of fluorine‐containing vinyl ethers [CH2?CH? O? C2H4? O? C3H6? CnF2n+1: 5FVE (n = 2), 13FVE (n = 6)] was investigated in various solvents with a CH3CH(OiBu)OCOCH3/Et1.5AlCl1.5 initiating system in the presence of an added base. 5FVE was polymerized quantitatively in toluene at 0 °C, and the obtained polymers had predetermined molecular weights with narrow molecular weight distributions (Mw/Mn < 1.1). On the other hand, for the polymerization of 13FVE, the product polymers precipitated due to their extremely poor solubility in nonfluorinated organic solvents. Therefore, fluorinated solvents such as hydrochlorofluorocarbons, hydrofluorocarbons, hydrofluoroethers, or α,α,α‐trifluorotoluene, as‐yet uninvestigated for cationic polymerization, were employed. In these solvents, living polymerization was achieved even with 13FVE, yielding well‐defined polymers (Mw/Mn < 1.1, by size exclusion chromatography using a fluorinated solvent as an eluent). The solvents were also shown to be good for living polymerization of isobutyl vinyl ether. The obtained fluorine‐containing polymers underwent temperature‐responsive solubility transitions in organic solvents. Poly(5FVE) showed sensitive upper critical solution temperature (UCST)‐type phase separation behavior in toluene. Copolymers of 13FVE and isobutyl vinyl ether showed UCST‐type phase separation in common organic solvents with different polarities depending on their composition, while a homopolymer of 13FVE was insoluble in all nonfluorinated organic solvents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

13.
We first achieved the living cationic polymerization of azide‐containing monomer, 2‐azidoethyl vinyl ether (AzVE), with SnCl4 as a catalyst (activator) in conjunction with the HCl adduct of a vinyl ether [H‐CH2CH(OR)‐Cl; R ? CH2CH2Cl, CH2CH(CH3)2]. Despite the potentially poisoning azide group, the produced polymers possessed controlled molecular weights and fairly narrow distributions (Mw/Mn ~ 1.2) and gave block polymers with 2‐chloroethyl vinyl ether. The pendent azide groups are easily converted into various functional groups via mild and selective reactions, such as the Staudinger reduction and copper‐catalyzed azide‐alkyne 1,3‐cycloaddition (CuAAC; a “click” reaction). These reactions led to quantitative pendent functionalization into primary amine (? NH2), hydroxy (? OH), and carboxyl (? COOH) groups, at room temperature and without any acidic or basic treatment. Thus, poly(AzVE) is a versatile precursor for a wide variety of functional vinyl ether polymers with well‐defined structures and molecular weights. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1449–1455, 2010  相似文献   

14.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

15.
In this study, we designed and investigated pH‐responsive nanoparticles based on different ratios of monomers with primary, secondary or tertiary amino groups. For this purpose, copolymers of methyl methacrylate (MMA) with different compositions of amino methacrylates (2‐(dimethylamino)ethyl methacrylate (DMAEMA), 2‐(tert‐butylamino)ethyl methacrylate (tBAEMA) and 2‐aminoethyl methacrylate hydrochloride (AEMA·HCI)) were synthesized using the reversible addition‐fragmentation chain transfer (RAFT) polymerization process. The controlled nature of the radical polymerization was demonstrated by kinetic studies. All copolymers show low dispersities (?M < 1.2) with amino contents between 9 and 21 mol %. For the nanoparticle formation, nanoprecipitation with subsequent solvent evaporation was used. All suspensions were characterized by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Different initial conditions of the formulations resulted in differently sized nanoparticles that have monomodal size distributions, relatively narrow polydispersity index (PDI) values and positive zeta potential values. The pH‐stability test results demonstrated that, depending on the structure and amount of the amino content, the obtained nanoparticles reveal a reversible pH‐response, such as dissolution at acidic pH values. The ability of the nanoparticles to encapsulate guest molecules was confirmed by pyrene fluorescence studies. The cytotoxicity assay results showed that the nanoparticles did not have any significant cytotoxic effect. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2711–2721  相似文献   

16.
Thermosensitive homopolymers and copolymers with hydroxy groups were synthesized via the living cationic polymerization of Si‐containing vinyl ethers. The cationic homopolymerization and copolymerization of five vinyl ethers with silyloxy groups, each with a different spacer length, were examined with a cationogen/Et1.5AlCl1.5 initiating system in the presence of an added base. When an appropriate base was added, the living cationic polymerization of Si‐containing monomers became feasible, giving polymers with narrow molecular weight distributions and various block copolymers. Subsequent desilylation gave well‐defined polyalcohols, in both water‐soluble and water‐insoluble forms. One of these polyalcohols, poly(4‐hydroxybutyl vinyl ether), underwent lower‐critical‐solution‐temperature‐type thermally induced phase separation in water at a critical temperature (TPS) of 42 °C. This phase separation was quite sensitive and reversible on heating and cooling. The phase separation also occurred sensitively with random copolymers of thermosensitive and hydrophilic or hydrophobic units, the TPS values of which in water could be controlled by the monomer feed ratio. The thermal responsiveness of this polyalcohol unit made it possible to prepare novel thermosensitive block and random copolymers consisting solely of alcohol units. One example prepared in this study was a 20 wt % aqueous solution of a diblock copolymer consisting of thermosensitive poly(4‐hydroxybutyl vinyl ether) and water‐soluble poly(2‐hydroxyethyl vinyl ether) segments, which transformed into a physical gel above 42 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3300–3312, 2003  相似文献   

17.
A series of novel graft copolymers consisting of perfluorocyclobutyl aryl ether‐based backbone and poly(methyl methacrylate) side chains were synthesized by the combination of thermal [2π + 2π] step‐growth cycloaddition polymerization of aryl bistrifluorovinyl ether monomer and atom transfer radical polymerization (ATRP) of methyl methacrylate. A new aryl bistrifluorovinyl ether monomer, 2‐methyl‐1,4‐bistrifluorovinyloxybenzene, was first synthesized in two steps from commercially available reagents, and this monomer was homopolymerized in diphenyl ether to provide the corresponding perfluorocyclobutyl aryl ether‐based homopolymer with methoxyl end groups. The fluoropolymer was then converted to ATRP macroinitiator by the monobromination of the pendant methyls with N‐bromosuccinimide and benzoyl peroxide. The grafting‐from strategy was finally used to obtain the novel poly(2‐methyl‐1,4‐bistrifluorovinyloxybenzene)‐g‐poly(methyl methacrylate) graft copolymers with relatively narrow molecular weight distributions (Mw/Mn ≤ 1.46) via ATRP of methyl methacrylate at 50 °C in anisole initiated by the Br‐containing macroinitiator using CuBr/dHbpy as catalytic system. These fluorine‐containing graft copolymers can dissolve in most organic solvents. This is the first example of the graft copolymer possessing perfluorocyclobutyl aryl ether‐based backbone. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
Controlled cationic polymerization of trans‐1‐methoxy‐1,3‐butadiene was achieved through the design of appropriate initiating systems, yielding soluble polymers with controllable molecular weights. The combined use of SnCl4 or GaCl3 as a Lewis acid catalyst and a weak Lewis base in conjunction with HCl as a protonogen resulted in efficient and controlled polymerization. The Mn values of the product polymers increased linearly along the theoretical line, which indicates that intermolecular crosslinking reactions negligibly occurred. In addition, the polymer microstructure was critically dependent on the weak Lewis base employed. In particular, the use of tetrahydrofuran as an additive resulted in the highest 4,1/4,3‐structure ratio (96/4). Weak Lewis bases also affected the polymerization rates but exhibited unique trends that differed from their effects on the cationic polymerization of alkyl vinyl ethers. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 288–296  相似文献   

19.
A new synthetic strategy, the combination of living polymerization of ylides and ring‐opening polymerization (ROP), was successfully used to obtain well‐defined polymethylene‐b‐poly(ε‐caprolactone) (PM‐b‐PCL) diblock copolymers. Two hydroxyl‐terminated polymethylenes (PM‐OH, Mn= 1800 g mol?1 (PDI = 1.18) and Mn = 6400 g mol?1 (PDI = 1.14)) were prepared using living polymerization of dimethylsulfoxonium methylides. Then, such polymers were successfully transformed to PM‐b‐PCL diblock copolymers by using stannous octoate as a catalyst for ROP of ε‐caprolactone. The GPC traces and 1H NMR of PM‐b‐PCL diblock copolymers indicated the successful extension of PCL segment (Mn of PM‐b‐PCL = 5200–10,300 g mol?1; PDI = 1.06–1.13). The thermal properties of the double crystalline diblock copolymers were investigated by differential scanning calorimetry (DSC). The results indicated that the incorporation of crystalline segments of PCL chain effectively influence the crystalline process of PM segments. The low‐density polyethylene (LDPE)/PCL and LDPE/polycarbonate (PC) blends were prepared using PM‐b‐PCL as compatibilizer, respectively. The scanning electron microscopy (SEM) observation on the cryofractured surface of such blend polymers indicates that the PM‐b‐PCL diblock copolymers are effective compatibilizers for LDPE/PCL and LDPE/PC blends. Porous films were fabricated via the breath‐figure method using different concentration of PM‐b‐PCL diblock copolymers in CH2Cl2 under a static humid condition. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
Well‐defined (AB)3 type star block copolymer consisting of aromatic polyether arms as the A segment and polystyrene (PSt) arms as the B segment was prepared using atom transfer radical polymerization (ATRP), chain‐growth condensation polymerization (CGCP), and click reaction. ATRP of styrene was carried out in the presence of 2,4,6‐tris(bromomethyl)mesitylene as a trifunctional initiator, and then the terminal bromines of the polymer were transformed to azide groups with NaN3. The azide groups were converted to 4‐fluorobenzophenone moieties as CGCP initiator units by click reaction. However, when CGCP was attempted, a small amount of unreacted initiator units remained. Therefore, the azide‐terminated PSt was then used for click reaction with alkyne‐terminated aromatic polyether, obtained by CGCP with an initiator bearing an acetylene unit. Excess alkyne‐terminated aromatic polyether was removed from the crude product by means of preparative high performance liquid chromatography (HPLC) to yield the (AB)3 type star block copolymer (Mn = 9910, Mw/Mn = 1.10). This star block copolymer, which contains aromatic polyether segments with low solubility in the shell unit, exhibited lower solubility than A2B or AB2 type miktoarm star copolymers. In addition, the obtained star block copolymer self‐assembled to form spherical aggregates in solution and plate‐like structures in film. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号