首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
 以非均相沉淀法制备了凹凸棒石 (PG) 载体上负载锰氧化物催化剂 Mn/PG, 并用于低温选择性催化还原法 (SCR) 脱硝反应. 采用 X 射线衍射、透射电子显微镜和 H2-程序升温还原方法对催化剂进行了表征; 通过 NH3 吸脱附实验考察了催化剂的锰负载量和煅烧温度对 NH3 吸附和脱附量及吸附位的影响. 结果表明, 锰氧化物高度分散于 PG 晶体表面, 其存在状态取决于催化剂煅烧温度. 煅烧温度低于 550 oC, 锰氧化物为 Mn2O3 和 Mn3O4, 煅烧温度为 550 oC 时, 锰氧化物为 Mn3O4. NH3 主要吸附在 PG 载体上, 锰氧化物的担载基本不影响催化剂吸附 NH3 的能力, 但促进了吸附 NH3 的活化, 这是催化剂 SCR 活性显著增加的直接原因.  相似文献   

2.
以ZrO(NO32·2H2O为前驱体对多壁碳纳米管(MWCNTs)进行了改性并负载MnOx制备了MnOx/ZrO2/MWCNTs 催化剂. 考察了Zr 对催化剂低温选择性催化还原(SCR)反应活性的影响,并通过多种分析手段对催化剂的结构进行了表征. 结果表明Zr 的添加对催化剂的低温SCR活性具有显著的促进作用,当Zr 负载量为30%时,催化剂活性最佳. X射线衍射(XRD)、拉曼(Raman)光谱、透射电镜(TEM)、N2吸附-脱附的表征结果分析表明,适量的Zr 改性促进了MnOx在载体表面的分散,增强金属氧化物与MWCNTs 之间的作用,也能增加催化剂的比表面积、孔容和孔径. X 射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和NH3程序升温脱附(NH3-TPD)的分析结果则显示,Zr 能提高催化剂表面化学吸附氧浓度,促进Mn3+转化为Mn4+,从而使催化剂表面的活性位点增多,氧化还原能力增强,同时还提高了催化剂表面酸性位点的数量和强度,促进了NH3的吸附,是MnOx/ZrO2/MWCNTs 催化剂低温SCR活性提高的主要原因.  相似文献   

3.
改性ZrO2-MnO2基整体式催化剂上NH3选择性催化还原NO   总被引:1,自引:0,他引:1  
采用共沉淀法制备了ZrO2-MnO2催化剂,考察了CeO2,MoO3和WO3的添加对ZrO2-MnO2整体式催化剂上NH3选择性催化还原(NH3-SCR)NOx的影响,并利用低温N2吸附-脱附、X射线衍射、X射线光电子能谱、NH3和NO程序升温脱附等方法对催化剂进行了表征,结果表明催化剂物相为Mn0.2Zr0.8O1....  相似文献   

4.
NO选择性催化还原Ce-Mn-Ti-O催化剂铈组分助催化作用   总被引:1,自引:0,他引:1  
用NH3程序升温脱附(NH3-TPD)、X射线衍射(XRD)、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)和BET表面积测试结合NO选择性催化还原(SCR)微型反应评价等方法,研究了溶胶-凝胶法制备的Ce-Mn-Ti-O复合氧化物催化剂中铈组分的助催化作用.结果表明随铈含量增加,NO转化率大幅度增加,在Ce/Mn摩尔比约0.08时达极大值,其后随铈含量进一步增加,NO转化率又逐渐下降.适量铈组分的加入对Mn-Ti-O催化剂表面酸性影响不大,但增加了催化剂活性组分Mn物种的表面浓度,提高了Mn4+物种的相对含量和Mn物种的可还原性,从而提高催化剂低温SCR活性.当Ce/Mn摩尔比超过0.08,催化剂表面的Mn组分与Ce组分可能形成无定型结构的多层聚集的Ce-O-Mn物种,导致催化剂Mn/Ti摩尔比下降和Mn物种可还原性下降,从而导致催化剂SCR活性的下降.  相似文献   

5.
 采用等体积浸渍法在不同温度下焙烧制备了一系列 MnO2-CeO2/Zr0.25Ti0.25Al0.5O1.75 整体式催化剂样品, 并用低温 N2 吸附-脱附、储氧量、X 射线衍射、X 射线光电子能谱和 NH3 程序升温脱附等对催化剂进行了表征, 考察了催化剂上 NH3 选择性催化还原 (SCR) NO 的活性. 结果表明, 随着焙烧温度的升高, 催化剂的比表面积和孔体积逐渐减小, 平均孔径逐渐增大, 储氧能力逐渐降低. 在 500~700 oC 焙烧时, 催化剂主要以无定形或微晶的形式存在; 在 500 oC 焙烧时, 催化剂表面 Mn 与载体之间的相互作用较强, 表面酸量最高, 有利于提高 SCR 活性. 尽管在 600 和 700 oC 焙烧的催化剂仍具有较高的 SCR 活性, 且表现出一定的抗 H2O 和 SO2 性能, 但活性有所下降. 800 oC 焙烧后催化剂的活性显著降低.  相似文献   

6.
采用3种不同的浸渍过程制备了系列WO3改性MnOx/TiO2催化剂,并采用BET比表面积测试、X射线衍射、拉曼光谱、H2程序升温还原、高分辨扫描电镜和原位红外光谱等技术进行表征.结果显示,一步浸渍法和先钨后锰的分布浸渍法制备的催化剂中,Mn和W的协同作用提高了活性组分的分散状态,并阻止了钛载体的转晶;在所有的Mn基催化剂中,Mn物种主要以Mn2O3形式存在,但在15%MnOx-5%WO3/TiO2中出现了少量的MnO2;WO3的加入大大增强了催化剂的还原能力,提高了其表面酸位尤其是B酸的数量与强度,并促进了活性中间物(NH2)的生成.表面Lewis酸在低温SCR反应起主要作用,并且发现NH2也是活性很高的物种.在NH3低温催化还原NO的反应中,一步浸渍法制备的催化剂活性最高.  相似文献   

7.
 采用浸渍法制备了 MnOx/Al0.82Ti0.18Ox (Mn/Al-Ti), Cu/Al-Ti, CuMn2/Al-Ti 和 CuMn2Zr1.25/Al-Ti 四种整体式催化剂, 并利用 X 射线衍射、X 射线光电子能谱、H2程序升温还原和氮吸附等手段对催化剂进行了表征, 考察了各整体式催化剂催化苯燃烧反应性能. 结果表明, ZrO2 的添加能明显提高催化剂的比表面积, 促进各活性组分的分散和表面氧浓度的增加, 从而提高催化剂表面的氧化能力, CuMn2Zr1.25/Al-Ti 整体式催化剂在 281 oC 时苯转化率达 91%, 表现出最高的低温催化活性.  相似文献   

8.
采用3种不同的浸渍过程制备了系列WO3改性MnOx/TiO2催化剂,并采用BET比表面积测试、X射线衍射、拉曼光谱、H2程序升温还原、高分辨扫描电镜和原位红外光谱等技术进行表征.结果显示,一步浸渍法和先钨后锰的分布浸渍法制备的催化剂中,Mn和W的协同作用提高了活性组分的分散状态,并阻止了钛载体的转晶;在所有的Mn基催化剂中,Mn物种主要以Mn2O3形式存在,但在15%MnOx-5%WO3/TiO2中出现了少量的MnO2;WO3的加入大大增强了催化剂的还原能力,提高了其表面酸位尤其是B酸的数量与强度,并促进了活性中间物(NH2)的生成.表面Lewis酸在低温SCR反应起主要作用,并且发现NH2也是活性很高的物种.在NH3低温催化还原NO的反应中,一步浸渍法制备的催化剂活性最高.  相似文献   

9.
采用共沉淀法制备了TiO2、Ti0.5Zr0.5O2(TZ)和Ti0.25Zr0.25Al0.5O1.75载体材料,并以MnO2和CeO2为活性组分,以T、TZ和TZA为载体,制备了3种整体式催化剂.对催化剂进行了低温N2吸附脱附、储氧量(OSC)、NH3-TPD和XPS的表征,并研究了3种催化剂在过量O2存在下的低温NH3-选择催化还原(NH3-SCR)活性及其抗H2O和SO2性能.结果指出,MnO2-CeO2/Ti0.25Zr0.25Al0.5O1.75(TZAC)有最大的比表面积、孔容和储氧能力、最强的表面酸性和最大的表面酸量.而这对选择催化还原(SCR)反应至关重要.活性测试结果指出,TZAC有最好的低温SCR活性和最宽的活性温度窗口.NO在102℃起燃(转化率为50%),在175~325℃之间NO转化率接近100%,而且TZAC表现出了较强的抗H2O和SO2性能.  相似文献   

10.
采用等体积浸渍法制备多壁碳纳米管(MWCNTs)负载Ce-Mn的催化剂,考察了Ce掺杂对Mn/MWCNTs催化剂上NH3选择性催化还原(SCR)NOx反应活性的影响.并运用透射电镜扫描、N2吸附-脱附、程序升温还原、X射线光电子能谱、X射线衍射等手段,重点考察了Ce掺杂对Mn/MWCNTs催化剂结构性质的影响.结果表明,Ce掺杂能显著提高催化剂的SCR活性,其活性增量随着Ce含量的增加先增大后减小;当Ce/Mn为0.6时,催化剂活性最佳.表征结果显示,Mn/MWCNTs中添加Ce后,金属氧化物在MWCNTs上的分散程度提高;催化剂的比表面积和孔体积增大,平均孔径减小;氧化能力提高;表面氧含量增加,Mn化合价升高;结晶度降低,Mn主要以无定形或微晶形式存在,Ce主要以CeO2物相存在.  相似文献   

11.
通过改进的Hummers法合成氧化石墨烯(GO), 随后采用水热法制备石墨烯负载锰氧化物(MnOx/GR)催化剂. 考察了催化剂的低温NH3选择性催化还原(NH3-SCR)去除NOx的性能, 并通过傅里叶变换红外(FTIR)光谱, 拉曼(Raman)光谱, X射线衍射(XRD), 透射电镜(TEM), N2吸附-脱附, X射线光电子能谱(XPS)及H2程序升温还原(H2-TPR)等多种表征手段对催化剂的结构及NH3-SCR性能进行分析. 结果显示, 不同MnOx负载量的MnOx/GR催化剂均展现了较好的低温SCR催化活性, 且在负载量为20%(w)时活性最优. 表征分析结果表明, 制备的GO表面含有丰富的含氧基团, 锰可以通过与含氧基团结合而负载到GO上; MnOx/GR催化剂中MnOx以纳米颗粒分散于石墨烯载体表面, 且以多种氧化物(MnO、Mn3O4和MnO2)共同存在; 负载量为20%(w)的催化剂中高价锰和表面吸附氧含量增加, 低温区氧化还原能力增强及活性位点数量增加是其SCR活性提高的原因.  相似文献   

12.
碱土金属对MnOx-CeO2/ZrO2-PILC催化剂SCR活性影响研究   总被引:2,自引:0,他引:2  
采用浸渍法模拟低温选择性催化还原(SCR)催化剂MnOx-CeO2/ZrO2-PILC的碱土金属中毒特性,研究了碱土金属及其负载量对中毒程度的影响。实验表明,钙/镁的添加会引起催化剂中毒,催化剂中毒失活程度与碱土金属的负载量有关。运用 X射线衍射(XRD)、H2程序升温还原( H2-TPR)、氮气吸脱附及 NH3程序升温脱附(NH3-TPD)对新鲜催化剂以及碱土金属中毒后的催化剂进行了表征。结果表明,钙/镁中毒后催化剂的比表面积降低、催化剂氧化还原性和表面酸性减少,进而造成催化剂失活。  相似文献   

13.
分别采用浸渍法、柠檬酸络合法以及沉淀法在SAPO-11分子筛上负载MnOx,制备了一系列MnOx/SAPO-11催化剂。考察了催化剂的低温NH3选择性催化还原(SCR) (NH3-SCR) NOx的性能。结果表明,沉淀法制备的负载量为20%(w)的MnOx/SAPO-11催化剂表现出最优异的低温NH3-SCR性能及N2选择性。通过X射线衍射(XRD)、扫描电镜(SEM)、能量散射谱(EDS)、原子吸收光谱(AAS)、N2吸附-脱附、X射线光电子能谱(XPS)、H2程序升温还原(H2-TPR)、NH3程序升温脱附(NH3-TPD)以及NO/O2程序升温脱附-质谱(NO/O2-TPD-MS)等多种表征手段对催化剂的结构及表面性质进行分析。表征结果显示,采用不同方法制备催化剂时,其表面MnOx的存在形式和晶相结构不同。沉淀法制备的催化剂表面存在无定型态MnOx以及MnO2晶型,具有较大的介孔及外表面积、更多比例的Mn4+和化学吸附氧,同时表面存在对反应有利的中强酸以及强酸。因此,催化剂在低温SCR反应阶段能够生成重要中间产物NO2,从而表现出最佳低温活性。同时,三种制备方法均能使MnOx相对均匀分散在SAPO-11表面。SAPO-11对催化剂表面MnOx物种的形成具有一定的影响,从而影响催化剂的酸性,拓宽了MnOx的活性温度窗口,提高了催化剂的N2选择性。  相似文献   

14.
采用浸渍法制备了不同MnO_x负载量的SCR催化剂,检测其在中低温下的脱硝活性和抗SO_2中毒性能,并分析影响Mn_αTi_(1-α)催化剂中低温活性的机理。采用BET、XRD、XPS、NH_3-TPD和H_2-TPR对催化剂表征。研究表明,随着MnO_x负载量的增加,Mn_αTi_(1-α)催化剂最高脱硝活性温度区间向低温区移动,Mn_(0.1)Ti_(0.9)催化剂在200-385℃脱硝效率达80%以上。SO_2会造成Mn_αTi_(1-α)催化剂脱硝活性显著下降,且不可逆。当MnO_x负载量增加时,催化剂比表面积先增大后略微减小、H_2-TPR中Mn~(4+)峰面积增大、表面化学吸附氧增加,有利于NH_3-SCR反应在低温下的进行。Mn_αTi_(1-α)催化剂的酸性位点随MnO_x含量增加而增多,H_2还原峰出现温度较低,表明Mn_αTi_(1-α)催化剂具有良好的中低温氧化还原性。  相似文献   

15.
采用自发沉积法、共沉淀法及浸渍法制备MnO_x/TiO_2催化剂,通过XRD、TEM、N2吸附-脱附、XPS、H_2-TPR、NH_3-TPD等一系列表征手段研究MnO_x/TiO_2催化剂的结构与性质,并考察MnO_x/TiO_2催化剂低温NH_3-SCR性能。结果表明,自发沉积法制备的MnO_x/Ti O2(s)催化剂具有完全非晶态结构,Mn和Ti之间存在强相互作用,较共沉淀法制备的MnO_x/TiO_2(c)及浸渍法制备的MnO_x/Ti O2(i)表现出更强的氧化还原能力。MnO_x/TiO_2(s)具有较高的比表面积、较多的表面酸量,有利于NH_3的吸附与活化。且表面高浓度的Mn4+离子及吸附氧,有利于将NO氧化为NO2,促进发生"fast-SCR"反应,进而使其表现出优异的低温脱硝性能。MnO_x/TiO_2(s)催化剂在150℃时NO的转化率高达92.8%,在150-350℃NO的转化率保持在90%以上,此外其还具备较强的抗H_2O和SO_2毒化能力。  相似文献   

16.
分别以β、ZSM-5和USY分子筛为载体,采用浸渍法制备了锰铈催化剂,对其低温NH_3-SCR反应性能进行了评价,并采用XRD、BET、NH_3-TPD、H_2-TPR以及XPS对催化剂进行了表征。结果表明,三种分子筛负载的锰铈催化剂均具有较好的低温NH_3-SCR反应活性,其中,Mn-Ce/USY的催化性能最好,在107℃时NOx转化率可达到90%。负载锰铈后催化剂的比表面积和孔体积均有所下降;活性组分MnOx主要以无定型态分布于催化剂表面,且在ZSM-5上检测到聚集的CeO_2。催化剂表面弱酸对低温NH3-SCR反应起主要作用,催化剂表面上活性组分的表面浓度和氧化态明显不同,较高的Mn~(4+)/Mn~(3+)原子比和吸附氧表面浓度对提高催化剂的低温NH3-SCR反应活性有利。  相似文献   

17.
采用水热合成方法制备含锰的SAPO-34分子筛(MnSAPO-34)催化剂,考察了锰投加量、焙烧温度及晶化时间对催化剂氨选择性催化还原(SCR)氮氧化物反应活性的影响,并通过X射线光电子能谱(XPS)、程序升温还原(TPR)、程序升温脱附(TPD)等多种分析手段对催化剂进行表征.活性测试结果表明,当MnO与P2O5的摩尔比n(MnO)/n(P2O5)= 0.1,采用6 h晶化时间, 550 ℃焙烧制备的MnSAPO-34分子筛具有最佳SCR活性, NOx转化率接近100%, N2选择性高于80%.分析结果表明, Mn的引入对分子筛的晶体及多孔结构有较大影响,过多的引入会降低结晶度及产生非骨架锰氧化物,同时还会降低分子筛的比表面积和孔容,但焙烧温度的降低以及晶化时间的缩短可以提高分子筛的比表面积和孔容.高温焙烧后分子筛表面出现了高氧化态锰物种,以Mn4+为主,而提高Mn3+的比例则有利于提高催化活性.在适当的合成条件下, Mn的引入可增强分子筛对NO和NH3分子的吸附,而强吸附态NO及强吸附态NH3的相互作用可能是催化活性快速提高的原因.  相似文献   

18.
CoMo/ZrO2-Al2O3催化剂的制备及其加氢脱氧性能   总被引:1,自引:0,他引:1  
以ZrOCl2·6H2O和Al2(SO4)3为原料,采用超声波共沉淀法制得一系列不同ZrO2质量分数的ZrO2- Al2O3复合氧化物载体;并以该复合氧化物为载体,采用等体积浸渍法制得Co和Mo质量分数分别为6.0%和16.0%的CoMo/ZrO2-Al2O3催化剂。BET、XRD、H2-TPR和NH3-TPD等表征结果表明,ZrO2-Al2O3复合氧化物载体具有较高的比表面积与较大的孔容、孔径,随着复合载体中ZrO2质量分数的增加,复合载体比表面积逐渐减小。ZrO2-Al2O3复合载体能高度分散活性组分,钴钼负载量接近其在载体上的单层分散阈值。相比于CoMo/Al2O3,CoMo/ZrO2-Al2O3催化剂具有较高的还原性能和较多的表面酸性活性中心,由此导致其在苯酚加氢脱氧(HDO)反应中,具有较高的加氢脱氧活性和苯选择性。
  相似文献   

19.
采用高温固相反应法、Pechini合成方法和柠檬酸配位法,制备了系列锂锰复合氧化物LiMn2O4催化剂,应用于NH3-SCR反应,并与固相反应法合成的MnO2进行了比较。采用N2吸附-脱附、扫描电镜、X射线衍射、H2程序升温还原、NH3程序升温脱附、NO程序升温脱附和X射线光电子能谱对LiMn2O4催化剂进行表征。结果表明,引入Li有利于提高锰基催化剂的SCR活性和抗硫性。Pechini法制备LiMn2O4的NO转化率可在130~260℃达到90%以上;固相反应法制备LiMn2O4的NO转化率大于90%的温度为90~310℃;MnO2的温度窗口则仅为140~280℃。与MnO2相比,引入Li可形成LiMn2O4结构,因此,催化剂中更多的锰离子保持在相对较低的价态Mn3+,并调整表面活性氧含量;同时,Li的存在调变了LiMn2O4表面的酸位,从而减少高温下MnO2表面容易发生的NH3非选择性氧化,改善其催化NH3-SCR反应的温度窗口,也增强了抗硫性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号