首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Polymerase chain reaction techniques for food allergen detection   总被引:5,自引:0,他引:5  
Food allergies represent an important health problem in industrialized countries. Undeclared allergenic foods as contaminants in food products pose a major risk for sensitized persons. Reliable detection and quantification methods for food allergens are necessary to ensure compliance with food labeling and improve consumer protection. The methods currently used for the detection of potential allergens in foods are to target either the allergen itself or a marker that indicates the presence of the offending food. As markers for the presence of potentially allergenic foods or ingredients, specific proteins or DNA fragments are targeted. In routine food analysis, the enzyme-linked immunosorbent assay (ELISA) and the polymerase chain reaction (PCR) in the form of a real-time PCR or in combination with an ELISA have been used. The availability, the characteristics, and some future aspects of DNA-based methods in the rapid and sensitive detection of potentially allergenic food constituents or contaminations are discussed in this review.  相似文献   

2.
The detection of food allergens has been a challenge because of the increasing need to ensure the absence of undeclared allergens in foods. The current trend in the detection of some food allergens, like peanuts, is based on the detection of multiple allergenic and nonallergenic proteins, and this is the approach that kit manufacturers have adopted. Because commercial kits differ in their ability to detect allergens, regulatory agencies, the food industry, and kit manufacturers are working together to standardize the detection methods. Three kits for the detection of peanuts have been evaluated for performance by the AOAC Research Institute. For this evaluation, a peanut butter suspension was used as a reference material. Several kit components contribute to between-kit analytical variation, even when the same sample is used. One component of commercial kits, which may be contributing to this variability, is the sample extraction buffer. In this study, differences in extractability of 3 allergenic foods were evaluated by using 4 different extraction buffers. The conclusion is that optimum allergen extractability was buffer-dependent, and no single buffer is appropriate for use as a universal extraction solution for all allergenic foods. Therefore, a thorough evaluation of sample preparation buffers needs to be performed for every individual allergenic food. In light of the results obtained, the current approach used for detection of peanut allergens based on the detection of multiple allergenic and nonallergenic proteins is being analyzed.  相似文献   

3.
吴慈  陈溪  刘健慧  张晓林  薛伟锋  梁振  刘梦遥  崔妍  黄大亮  张丽华 《色谱》2017,35(10):1037-1041
基于高效液相色谱-串联质谱(LC-MS/MS)技术,选择稳定性好、灵敏度高的特征肽段,利用平行反应监测(PRM)技术,实现了多类过敏原蛋白质的高灵敏度同时检测,并成功应用于婴幼儿食品中过敏原成分的分析。对于婴幼儿食品中蛋白质的提取,与传统的丙酮沉淀法比,采用膜上原位样品预处理方法(i-FASP)可实现更高的蛋白质提取效率和抗干扰能力。所检测的过敏原蛋白质的定量限(LOQ)最小可达到0.028 mg/L,其线性范围最宽可跨越4个数量级,且线性关系良好(相关系数R~2≥0.99)。该方法为食品中过敏原蛋白质组学快速分析提供了一种可靠的分析方法。  相似文献   

4.
The enzyme-linked immunosorbent assay (ELISA) offers many advantages for the detection of potentially hazardous allergenic food residues that might become adventitious components of other foods during the course of food production and processing. ELISAs detect proteins, and food allergens are proteins. ELISAs are sufficiently sensitive and specific for detection of food allergen residues. ELISAs can also be produced in formats that are compatible with the industrial food processing environment. However, ELISAs also have disadvantages that should be carefully evaluated and widely recognized. Various food-processing operations can have profound effects on the detectability of allergenic food residues. ELISAs detect intact proteins but protein hydrolysates evade detection in some ELISA formats. The residual proteins present in some ingredients derived from commonly allergenic sources may also not be easily detected with ELISAs because of the nature of the protein residues remaining, e.g. lipophilic. Processing operations can dramatically lower the solubility of proteins. In some food formulations, heat processing, in particular, induces chemical modifications that can affect antibody binding to epitopes in the ELISA. The use of naturally incurred standards where allergenic food residues are incorporated into various representative food matrices and then processed in a manner similar to “real-world” food processing can reveal some of the limitations of allergen ELISAs. Methods for the preparation of naturally incurred standards in chocolate, cookie, muffin, ice cream, pasta, frankfurter, and cream of potato soup are provided as examples.  相似文献   

5.
The availability of accurate and sensitive detection methods for food allergens is crucial for the food industry to ensure the correct labelling of their products in order to protect allergic consumers. For this purpose a method using solid-phase extraction and liquid chromatography coupled to mass spectrometry was developed to detect traces of three allergenic cow milk proteins (lactalbumin, lactoglobulins A and B) in mixed-fruit juice samples. Different sample pre-treatments were compared and the best recoveries were obtained with a method employing a solid-phase extraction cartridge. Recoveries ranging from 68% to 79% were achieved for 5 and 20microg/ml tested and the limit of detection was set at 1microg/ml. Both full scan and multiple ion monitoring acquisition modes were investigated and compared. The method was utilized to analyse 15 mixed-fruit juices collected from the market and was found to be capable of positively identifying all three milk proteins. The developed method enables the unambiguous determination of allergenic whey proteins in mixed-fruit juices and can assist in the protection of milk allergic individuals.  相似文献   

6.
Food allergies have become an important health issue especially in industrialized countries. Undeclared allergenic ingredients or the presence of “hidden” allergens because of contamination during the food production process pose great health risks to sensitised individuals. The EU directive for food labelling lists allergenic foods that have to be declared on food products by the manufacturers. The list includes gluten-containing cereals, crustaceans, eggs, fish, peanuts, soybeans, milk, various nuts (e.g. almond, hazelnut, and walnut, etc.), celery, mustard, sesame seeds, lupin, and molluscs. Reliable methods for detection and quantification of food allergens are needed that can be applied in a fast and easy-to-use manner, are portable, and need only limited technical equipment. This review focuses on the latest developments in food allergen analysis with special emphasis on fast immunoanalytical methods such as rapid enzyme-linked immunosorbent assays (ELISA), lateral-flow immunochromatographic assays (LFA) and dipstick tests. Emerging technologies such as immunochemical microarrays and biosensors are also discussed and their application to food allergen analysis is reviewed. Finally, a comprehensive overview of rapid immunochemical test kits that are currently available commercially is given in tabular form.  相似文献   

7.
In the last years proteomic science has started to provide an important contribution to the disclosure of basic aspects of food-related diseases. Among these, the identification of proteins involved in food allergy and their mechanism of activation of toxicity. Elucidation of these key issues requires the integration of clinical, immunological, genomic and proteomic approaches. These combined research efforts are aimed to obtain structural and functional information to assist the development of novel, more reliable and powerful diagnostic protocols alternative to the currently available procedures, mainly based on food challenge tests. Another crucial aspect related to food allergy is the need for methods to detect trace amounts of allergenic proteins in foods. Mass spectrometry is the only non-immunological method for high-specificity and high-sensitivity detection of allergens in foods. Nowadays, once provided the appropriate sample handling and the correct operative conditions, qualitative and quantitative determination of allergens in foods and ingredients can be efficiently obtained by MALDI-TOF-MS and LC-MS/MS methods, with limits of detection and quantification in the low-ppb range. The availability of accurate and fast alternatives to immunological ELISA tests may also enable the development of novel therapeutic strategies and food processing technologies to aid patients with food allergy or intolerance, and to support allergen labelling and certification processes, all issues where the role of proteomic science is emerging.  相似文献   

8.
The detection of allergenic ingredients in food products has received increased attention from the food industry and legislative and regulatory agencies over recent years. This has resulted in the improvement of measures aimed at the protection of food-allergic consumers. The controlled production of food products and control activities executed by food inspection agencies rely on the availability of methods capable of detecting traces of allergenic ingredients. The development of such methods faces a multitude of analytical challenges. Those challenges will be identified and discussed in this review. Furthermore, future developments and trends in analytical methodology as applied to the detection of food allergens are reported.  相似文献   

9.
Since 2005, celery and celery products have to be labeled according to Directive 2003/89/EC due to their allergenic potential. In order to provide a DNA-based, rapid and simple detection method suitable for high-throughput analysis, a loop-mediated isothermal amplification (LAMP) assay for the detection of celery (Apium graveolens) was developed. The assay was tested for specificity for celery since closely related species also hold food relevance. The limit of detection (LOD) for spiked food samples was found to be as low as 7.8 mg of dry celery powder per kilogram. An evaluation of different amplification and detection platforms was performed to show reliable detection independent from the instrument used for amplification (thermal cycler or heating block) and detection mechanisms (real-time fluorescence detection, agarose gel electrophoresis or nucleic acid staining). The analysis of 10 commercial food samples representing diverse and complex food matrices, and a false-negative rate of 0 % for approximately 24 target copies or 0.08 ng celery DNA for three selected food matrices show that LAMP has the potential to be used as an alternative strategy for the detection of allergenic celery. The performance of the developed LAMP assay turned out to be equal or superior to the best available PCR assay for the detection of celery in food products.  相似文献   

10.
Peanut proteins can cause allergenic reactions that can result in respiratory and circulatory effects in the body sometimes leading to shock and death. The determination of peanut proteins in foods by analytical methods can reduce the risk of serious reactions in the highly sensitized individual by allowing for the detection of these proteins in a food at various stages of the manufacturing process. The method performance of 4 commercially available enzyme-linked immunosorbent assay (ELISA) kits was evaluated for the detection of peanut proteins in milk chocolate, ice cream, cookies, and breakfast cereals: ELISA-TEK Peanut Protein Assay, now known as "Bio-Kit" for peanut proteins, from ELISA Technologies Inc.; Veratox for Peanut Allergens from Neogen Corp.; RIDASCREEN Peanut Kit from R-Biopharm GmbH; and ProLisa from Canadian Food Technology Ltd. The 4 test kits were evaluated for accuracy (recovery) and precision using known concentrations of peanut or peanut proteins in the 4 food matrixes. Two different techniques, incurred and spiked, were used to prepare samples with 4 known concentrations of peanut protein. Defatted peanut flour was added in the incurred samples, and water-soluble peanut proteins were added in the spiked samples. The incurred levels were 0.0, 10, 20, and 100 microg whole peanut per g food; the spiked levels were 0.0, 5, 10, and 20 microg peanut protein per g food. Performance varied by test kit, protein concentration, and food matrix. The Veratox kit had the best accuracy or lowest percent difference between measured and incurred levels of 15.7% when averaged across all incurred levels and food matrixes. Recoveries associated with the Veratox kit varied from 93 to 115% for all food matrixes except cookies. Recoveries for all kits were about 50% for cookies. The analytical precision, as measured by the variance, increased with an increase in protein concentration. However, the coefficient of variation (CV) was stable across the 4 incurred protein levels and was 7.0% when averaged across the 4 food matrixes and analytical kits. The R-Biopharm test kit had the best precision or a CV of 4.2% when averaged across all incurred levels and food matrixes. Because measured protein values varied by test kit and food matrix, a method was developed to normalize or transform measured protein concentrations to an adjusted protein value that was equal to the known protein concentration. The normalization method adjusts measured protein values to equal the true protein value regardless of the type test kit or type food matrix.  相似文献   

11.
Undirected modifications between food proteins and secondary plant metabolites can occur during food processing. The results of covalent interactions can alter the functional and biological properties of the proteins. The present work studied the extent of which covalent conjugation of the bioactive metabolite benzyl isothiocyanate (BITC; a glucosinolate breakdown product) to the whey protein α-lactalbumin affects the protein’s allergenicity. Additional to the immunological analysis of native untreated and BITC-modified α-lactalbumin, the analysis of antigenic properties of proteolytically digested protein derivatives was also performed by high performance thin layer chromatography and immunostaining. As a result of the chemical modifications, structural changes in the protein molecule affected the allergenic properties. In this process, epitopes are destroyed or inactivated, but at the same time, buried epitopes can be exposed or newly formed, so that the net effect was an increase in allergenicity, in this case. Results from the tryptic hydrolysis suggest that BITC conjugation sterically hindered the cleavage sites for the enzyme, resulting in reduced digestibility and allergenicity. Residual antigenicity can be still present as short peptide fragments that provide epitopes. The desire to make food safer for allergy sufferers and to protect sensitized individuals from an allergenic reaction makes it clear that the detection of food antigens is mandatory; especially by considering protein interactions.  相似文献   

12.
Aflatoxin analysis at the beginning of the twenty-first century   总被引:4,自引:0,他引:4  
Aflatoxin mycotoxins were first described in the early 1960s as important fungal toxins, which contaminate many different human foods and animal feeds. Accurate and sensitive determination of these carcinogenic compounds immediately became an important requirement to meet food safety concerns and new official legislated regulations. For these reasons, analytical methods for aflatoxins continued to develop over the decades, reflecting advances in analytical chemistry. Currently, a wide range of methods are available to analytical scientists, ranging from newly described multi-toxin liquid chromatography tandem mass spectrometry to rapid methods based on immunological principles. These latter methods can provide quantitative outputs or a simple rapid determination of contamination level above or below a pre-determined cutoff value. The newest official methods as validated by Association of Official Analytical Chemists International or Comité Européen de Normalisation rely on immunoaffinity column clean-up of conventional extracts, followed by high-performance liquid chromatography separation of the analogues with detection based on natural fluorescence or the fluorescence generated by various derivatisation methods. In selecting from this range of available methods, the analytical chemist must decide on the requirements of the analysis such that the method chosen is ‘fit for purpose’.  相似文献   

13.
Reliable methods are needed for detection of allergenic milk proteins in complex food matrixes. The feasibility of an LC/high-resolution MS method for the analysis of milk proteins in a thermally processed model food (incurred cookies) and in white wine spiked, respectively, with milk powder and caseinate is described. Detection of milk proteins was based on the identification of unique peptides in the tryptic digests of cookie/wine extracts using an RP-HPLC separation coupled to an Exactive nonhybrid mass spectrometer using Orbitrap technology. The extremely high mass accuracy and resolution provided by the Orbitrap analyzer allowed a fast preliminary identification of four previously proposed peptide markers of caseins using only accurate values of the m/z of their ions. No interference was observed, despite the complexity of the analyzed matrixes. Moreover, the availability of a high- energy, collisionally activated dissociation cell integrated in the mass spectrometer enabled acquisition of peptide MS/MS-like spectra through post-source fragmentation. Confirmation of peptide marker identity could then be achieved by a comparison between experimental and predicted product ions. The described method shows the great potential of Orbitrap MS as a reliable technique in the field of protein allergen detection once the peptide markers are identified.  相似文献   

14.
Fish are a common cause of allergic reactions associated with food consumption, with parvalbumin being the major allergenic protein. Some fish-hypersensitive patients tolerate some fish species while being allergic to others. Reliable detection methods for allergenic fish species in foods are necessary to ensure compliance with food allergen labeling guidelines to protect fish-allergic consumers. The objective of this project was to develop a multi-analyte detection method for the presence of fish in food. Therefore, conserved parvalbumin exon sequences were utilized for the design of universal PCR primers amplifying intron DNA and small regions of exons flanking the enclosed intron from even very distantly related fish species. An assay for the identification of eight fish species was developed using xMAP™ technology with probes targeting species-specific parvalbumin intron regions. Additionally, a universal fish probe was designed targeting a highly conserved exon region located between the intron and the reverse primer region. The universal fish assay showed no cross-reactivity with other species, such as beef, pork, lamb, chicken, turkey, and shrimp. Importantly, with the exception of one notable case with fish in the same subfamily, species-specific detection showed no cross-reactivity with other fish species. Limits of detection for these eight species were experimentally estimated to range from 0.01% to 0.04%, with potential to increase the detection sensitivity. This report introduces a newly developed method for the multiplex identification of at least eight allergenic fish species in food, which could conceivably be extended to detect up to 100 species simultaneously in one sample.  相似文献   

15.
Azzazy HM  Mansour MM 《The Analyst》2007,132(10):951-957
The quest for athletic excellence holds no limit for some athletes, and the advances in recombinant DNA technology have handed these athletes the ultimate doping weapons: recombinant proteins and gene doping. Some detection methods are now available for several recombinant proteins that are commercially available as pharmaceuticals and being abused by dopers. However, researchers are struggling to come up with efficient detection methods in preparation for the imminent threat of gene doping, expected in the 2008 Olympics. This Forum article presents the main detection strategies for recombinant proteins and the forthcoming detection strategies for gene doping as well as the prime analytical challenges facing them.  相似文献   

16.
杨欢  曹赵云  马有宁  陈铭学 《色谱》2021,39(12):1314-1323
基于稳定同位素标记特征肽段和液相色谱-质谱联用仪建立稻米及制品中3种过敏蛋白质的同时定量方法。稻米及制品样品经盐溶液提取,赖氨酰基内切酶(Lys-C)和胰蛋白酶依次水解,C18-SD柱净化后,采用纳升高效液相色谱-线性离子阱-静电场轨道阱(NanoLC-LTQ-Orbitrap)采集和Protein Discovery软件鉴定,NCBI和Uniprot数据库的基本局部搜索比对工具(BLAST)筛选验证,最终获得表征稻米及制品中α-淀粉酶/胰蛋白酶抑制剂类蛋白质(seed allergenic protein RAG2, RAG2)、乙二醛酶Ⅰ活性蛋白(glyoxalase Ⅰ)和α-球蛋白(19 kDa globulin)3种过敏蛋白质的特异性肽段。3个特异性肽段经液相色谱梯度洗脱,在Poroshell色谱柱上实现完全分离,由三重四极杆质谱仪分析。实验通过优化多反应监测(MRM)质谱参数,比较不同溶剂体系、水解酶种类和酶量等酶解条件,结合内标法定量,实现对稻米及制品中3种蛋白质的绝对定量。实验结果表明,当酶解溶剂中含1 g/L十二烷基硫酸钠,采用Lys-C和胰蛋白酶组合消化策略,可有效提高3种蛋白质的酶切效率至65.7%~97.3%。该方法在1~200 nmol/L范围内线性关系良好,相关系数均大于0.9972, 3种蛋白质的检出限和定量限分别为3 mg/kg和10 mg/kg。3种蛋白质在空白稻米制品基质中3个水平下的加标回收率为80.6%~103.7%,日间和日内精密度均小于11.5%。该方法稳定性好,检测灵敏度高,操作简便,在分析各类稻米及制品中3种过敏蛋白质含量具有广泛的应用前景。  相似文献   

17.

Abstract  

Individuals with known hypersensitivity or food allergy need to avoid ingestion of provoking food. Correct labelling of allergenic content in manufactured food products and the reliable determination of its residual immunoreactivity after several processing steps are therefore a major concern for the food industry. We evaluated the applicability of a new immunochip biosensor system to reveal the allergenic profile of the whey protein β-lactoglobulin (β-LG) in its natural biological cow’s milk matrix upon processing by tryptic digestion and extensive heat treatment. Colorimetric immunochemical signals generated by gold nanoparticles (Au NPs), in particular their functional optical property based on resonance-enhanced absorption of mirror-reflected light, were directly visible to the ‘naked’ eye of the analyst without the need of any instrumentation or enzyme-substrate for read-out. By using affinity-purified polyclonal rabbit IgG against the native protein, no antigenicity was detected for tryptic fragments. Both heat-denatured whey proteins and cow’s whole milk, however, did not lose their antibody-binding capacity even after a processing time of 20 min at 95°C for the whey proteins, and 60 min at 90°C for the milk, though the immunochemical response was considerably low compared to the unprocessed β-LG. Additionally, cross-reactivity and the false positive as well as false negative predictive value of the chip system were highlighted critically.  相似文献   

18.
A liquid chromatography–electrospray-tandem mass spectrometry (LC–ESI-MS–MS) method based on the detection of biomarker peptides from allergenic proteins was devised for confirming and quantifying peanut allergens in foods. Peptides obtained from tryptic digestion of Ara h 2 and Ara h 3/4 proteins were identified and characterized by LC–MS and LC–MS–MS with a quadrupole-time of flight mass analyzer. Four peptides were chosen and investigated as biomarkers taking into account their selectivity, the absence of missed cleavages, the uniform distribution in the Ara h 2 and Ara h 3/4 protein isoforms together with their spectral features under ESI-MS–MS conditions, and good repeatability of LC retention time. Because of the different expression levels, the selection of two different allergenic proteins was proved to be useful in the identification and univocal confirmation of the presence of peanuts in foodstuffs. Using rice crispy and chocolate-based snacks as model food matrix, an LC–MS–MS method with triple quadrupole mass analyzer allowed good detection limits to be obtained for Ara h2 (5 μg protein g−1 matrix) and Ara h3/4 (1 μg protein g−1 matrix). Linearity of the method was established in the 10–200 μg g−1 range of peanut proteins in the food matrix investigated. Method selectivity was demonstrated by analyzing tree nuts (almonds, pecan nuts, hazelnuts, walnuts) and food ingredients such as milk, soy beans, chocolate, cornflakes, and rice crispy. Figure ESI-QTOF-MS mass spectrum of Ara h3/4 triptig digest  相似文献   

19.
The development of a multi-method for the detection of seven allergens based on liquid chromatography and triple-quadrupole tandem mass spectrometry in multiple reaction mode is described. It is based on extraction of the allergenic proteins from a food matrix, followed by enzymatic digestion with trypsin. The chosen marker peptides were implemented into one method that is capable of the simultaneous detection of milk, egg, soy, hazelnut, peanut, walnut and almond. This method has been used to detect all seven allergenic commodities from incurred reference bread material, which was baked according to a standard recipe from the baking industry. Detected concentrations ranged from 10 to 1000 μg/g, demonstrating that the mass spectrometric based method is a useful tool for allergen screening.  相似文献   

20.
Celiac disease and wheat allergy are the most common adverse reactions triggered by cereal proteins, mainly gluten, which is one of the 14 allergenic food ingredients that must be labeled on food products in the European Union (EU). To meet the requirements of this regulation, reliable analytical methodology for proper quantification of gluten is necessary. However, validation of presently used methods (ELISA and lateral flow device) is limited partly due to the lack of reference methods and incurred reference materials. To solve this problem, the goal of our work was to develop an incurred reference material for the quantification of gluten under the auspices of EU-FP6 funded Network of Excellence MoniQA. During this work, we produced a processed model product (cookie) containing gliadin (major allergenic fraction of gluten) in a defined amount. This paper addresses the development process of this material together with the associated problems (insufficient homogeneity and low recovery) and their solutions. As a result, an incurred food matrix was produced on a laboratory-scale with a potential use as a reference material. The model product was tested by an ELISA method followed by a comparative study of commercially available ELISA kits to investigate the applicability of the product. Preliminary results of this study are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号