首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
在不加任何催化剂条件下, 2-(12-苯并吖啶酮)-乙酸(BAAA)与N,N′-羰基双咪唑(CDI)缩合生成新型荧光探针5-羰基咪唑苯并吖啶酮(IEBA). IEBA在DMF溶剂中与胺类化合物形成的酰胺类衍生物不仅可发出强烈的荧光, 还具有较高的质谱离子化能力. 该衍生物在乙腈和甲醇-水溶液中的百分离子化δ值分别在0~57.32% 和0~62.14%范围内. 最大激发和发射波长λex/λem=272 nm/505 nm. 12种胺类衍生物的荧光检出限范围为0.15~0.50 ng/mL, 在线APCI-MS检出限范围为1.43~8.51 ng/mL.  相似文献   

2.
An improved reagent named 2-[2-(dibenzocarbazole)-ethoxy] ethyl chloroformate (DBCEC-Cl) for the determination of aliphatic amines by high-performance liquid chromatography (HPLC) with fluorescence detection and post-column online atmospheric chemical ionization-mass spectrometry (APCI-MS) identification has been developed. DBCEC-Cl could easily and quickly label aliphatic amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M+H]+ under APCI-MS in positive-ion mode. The ratios for fluorescence responses were IDBCEC-amine/IBCEC-amine = 1.02-1.60; IDBCEC-amine/IBCEOC-amine = 1.30-2.57; and IDBCEC-amine/IFMOC-amine = 2.20-4.12 (here, I was relative fluorescence intensity). The ratios for MS responses were ICDBCEC-amine/ICBCEC-amine = 4.16-29.31 and ICDBCEC-amine/ICBCEOC-amine = 1.23-2.47 (Here, IC: APCI-MS ion current intensity). Detection limits calculated from 0.0244 pmol injection, at a signal-to-noise ratio of 3, were 0.3-3.0 fmol. The relative standard deviations for within-day determination (n = 6) were 0.045-0.081% for retention time and 0.86-1.03% for peak area for the tested aliphatic amines. The mean intra- and inter-assay precision for all amine levels were <3.64% and 4.67%, respectively. The mean recoveries ranged from 96.9% to 104.7% with their standard deviations in the range of 1.80-2.70 (RSDs%). Excellent linear responses were observed with coefficients of >0.9991.  相似文献   

3.
采用3种不同衍生方法对胺类化合物进行标记,比较衍生效率的差别,给出最优方法:5-(2-羟乙基)-(苯并吖啶酮与N,N-羰基双咪唑(CDI)缩合形成的双敏感探针2-(苯并吖啶酮)-乙基咪唑酸酯(BAEIC)与胺的衍生效率最高,产物稳定。BAEIC在N,N-二甲基甲酰胺(DMF)溶剂中以4-二甲氨基吡啶(DMAP)为催化剂,在80℃条件下与胺反应生成的亲核取代物,不仅表现出强烈的荧光,同时具有很强的质谱离子化能力。估算了衍生物在乙腈和甲醇水溶液中百分离子化值δ在5.62%~58.08%和2.14%~56.58%范围内。本方法具有良好的重现性,激发和发射波长为λex/λem=280/510nm,荧光检出限为0.12~0.59μg/L(8.6~79fmol);在线APCI-MS检出限为1.9~14μg/L(544~825fmol)。  相似文献   

4.
A pre-column derivatization method for the sensitive determination of amines using a labeling reagent 2-(11H-benzo[a]-carbazol-11-yl) ethyl chloroformate (BCEC-Cl) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by LC/APCI/MS in positive-ion mode. The chromophore of 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) reagent was replaced by 2-(11H-benzo[a]-carbazol-11-yl) ethyl functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEC-Cl. BCEC-Cl could easily and quickly label amines. Derivatives were stable enough to be efficiently analyzed by HPLC and showed an intense protonated molecular ion corresponding m/z [M + H]+ under APCI/MS in positive-ion mode. The collision-induced dissociation of the protonated molecular ion formed characteristic fragment ions at m/z 261.8 and m/z 243.8 corresponding to the cleavages of CH2O-CO and CH2-OCO bonds. Studies on derivatization demonstrated excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% were observed with three- to four-fold molar reagent excess. In addition, the detection responses for BCEC-derivatives were compared to those obtained using 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC-Cl) and 9-fluorenyl methylchloroformate (FMOC-Cl) as labeling reagents. The ratios IBCEC/IBCEOC = 1.94-2.17 and IBCEC/IFMOC = 1.04-2.19 for fluorescent (FL) responses (here, I was relative fluorescence intensity). Separation of the derivatized amines had been optimized on reversed-phase Eclipse XDB-C8 column. Detection limits calculated from 0.50 pmol injection, at a signal-to-noise ratio of 3, were 1.77-14.4 fmol. The relative standard deviations for within-day determination (n = 11) were 1.84-2.89% for the tested amines. The mean intra- and inter-assay precision for all amines levels were <3.64% and 2.52%, respectively. The mean recoveries ranged from 96.6% to 107.1% with their standard deviations in the range of 0.8-2.7. Excellent linear responses were observed with coefficients of >0.9996.  相似文献   

5.
A simple, sensitive, and mild method for the determination of amino compounds based on a condensation reaction with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC·HCl) as the dehydrant with fluorescence detection has been developed. Amines were derivatized to their acidamides with labeling reagent 2-(2-phenyl-1H-phenanthro-[9,10-d]imidazole-1-yl)-acetic acid (PPIA). Studies on derivatization conditions indicated that the coupling reaction proceeded rapidly and smoothly in the presence of a base catalyst in acetonitrile to give the corresponding sensitively fluorescent derivatives with an excitation maximum at λex 260 nm and an emission maximum at λem 380 nm. The labeled derivatives exhibited high stability and were enough to be efficiently analyzed by high-performance liquid chromatography. Identification of derivatives was carried out by online post-column mass spectrometry (LC/APCI-MS/MS) and showed an intense protonated molecular ion corresponding m/z [MH]+ under APCI in positive-ion mode. At the same time, the fluorescence properties of derivatives in various solvents or at different temperature were investigated. The method, in conjunction with a gradient elution, offered a baseline resolution of the common amine derivatives on a reversed-phase Eclipse XDB-C8 column. LC separation for the derivatized amines showed good reproducibility with acetonitrile-water as mobile phase. Detection limits calculated from 0.78 pmol injection, at a signal-to-noise ratio of 3, were 3.1-18.2 fmol. The mean intra- and inter-assay precision for all amine levels were <3.85% and 2.11%, respectively. Excellent linear responses were observed with coefficients of >0.9996. The established method for the determination of aliphatic amines from real wastewater and biological samples was satisfactory.  相似文献   

6.
A pre-column derivatization method for the sensitive determination of aldehydes using the tagging reagent 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl carbonylhydrazine (DBCEEC) followed by high-performance liquid chromatography with fluorescence detection and APCI-MS identification has been developed. The chromophore of fluoren-9-methoxy-carbonylhydrazine (Fmoc-hydrazine) reagent was replaced by 2-[2-(7H-dibenzo[a,g] carbazol-7-yl)-ethoxy] ethyl functional group, which resulted in a sensitive fluorescence tagging reagent DBCEEC. DBCEEC could easily and quickly labeled aldehydes. The maximum excitation (300 nm) and emission (400 nm) wavelengths did not essentially change for all the aldehyde derivatives. Derivatives were sufficiently stable to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z [M + (CH2)n]+ in positive-ion mode (M: molecular weight of DBCEEC, n: corresponding aldehyde carbon atom numbers). The collision-induced dissociation of protonated molecular ion formed fragment ions at m/z 294.6, m/z 338.6 and m/z 356.5. Studies on derivatization demonstrated excellent derivative yields in the presence of trichloroacetic acid (TCA) catalyst. Maximal yields close to 100% were observed with a 10 to 15-fold molar reagent excess. Separation of the derivatized aldehydes had been optimized on ZORBAX Eclipse XDB-C8 column with aqueous acetonitrile as mobile phase in conjunction with a binary gradient elution. Excellent linear responses were observed at the concentration range of 0.01-10 nmol mL−1 with coefficients of >0.9991. Detection limits obtained by the analysis of a derivatized standard containing 0.01 nmol mL−1 of each aldehyde, were from 0.2 to 1.78 nmol L−1 (at a signal-to-noise ratio of 3).  相似文献   

7.
A simple and highly sensitive high-performance liquid chromatography (HPLC) for the determination of pipecolic acid (PA) in serum was developed. Pipecolic acid and nipecotic acid (internal standard (IS)) were derivatised with 4-(5,6-dimethoxy-2-phthalimidinyl)-2-methoxyphenylsulfonyl chloride (DMS-Cl) to produce fluorescent sulfonamides. The labelling reaction was carried out at 70 °C for 15 min at pH 9.0. The fluorescent derivatives were separated on a reversed-phase column (45 °C) with a stepwise elution using methanol/acetonitrile/10 mmol l−1 acetic acid (42:5:53) and methanol at a flow rate of 1.0 ml/min and detected at excitation and emission wavelengths of 316 and 403 nm, respectively. The labelling yield was 100.8%. The detection limit of pipecolic acid was 4 fmol at signal-to-noise ratio of 3. The within-day and day-to-day relative standard deviations were 3.3-8.1 and 1.4-6.4%, respectively. The concentration of pipecolic acid in normal human serum was 1.09±0.37 μmol l−1.  相似文献   

8.
A microchip capillary electrophoresis system with highly sensitive fluorescence detection is reported. The system was successfully constructed using an inverted fluorescence microscope, a highly sensitive photon counter, a photomultiplier tube (PMT) and a capillary electrophoresis microchip. This system can be applied to the fluorescence detection with various wavelengths (300-600 nm). Different fluorescence reagents require different excitation wavelengths. The wavelengths of UV light (300-385 nm), blue light (450-480 nm) and green light (530-550 nm) are employed to excite Titan yellow, fluorescence-5-isothiocyanate (FITC) and Rhodamine 6G, respectively. The detection limit (S/N = 3) of FITC is 7 × 10−10 M, which is 2-3 orders of magnitude lower than that obtained with the lamp-based fluorescence and PMT detection system and approaches the data gained by the laser-induced fluorescence detection. The linear relationship is excellent within the range of concentration 1.3 × 10−9 to 6.5 × 10−8 M FITC. It offers a new method to widen the application of the lamp-based fluorescence detection.  相似文献   

9.
Dongling L  Xiaoyan H  Haizhou W 《Talanta》2004,63(2):233-237
A method for the simultaneous determination of Nb and Ta in steel and alloy by reversed-phase high-performance liquid chromatography (RP-HPLC) was proposed. 2-(5-Bromo-2-pyridylazo)-5-diethylamino phenol (5-Br-PADAP) was used as a pre-column chelating agent to form a ternary complex with Nb(V) and Ta(V) and tartaric acid. The ternary complexes of Nb(V) and Ta(V) were eluted within 8 min on a C18 column with a mobile phase of methanol-water (55:45, v/v) containing 10 mmol l−1 acetate buffer (pH3.5) and determined with spectrophotometric detection at 598 nm. The detection limits for Nb(V) and Ta(V) were 0.60 and 0.72 μg l−1, respectively, when the ratio of signal-to-noise is 3. The proposed method was used to analyze Nb and Ta in cast iron, alloy and stainless steel.  相似文献   

10.
Cylindrospermopsin (CYN) was determined by liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) using 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) as the internal standard. In the selected ion monitoring of LC/ESI-MS, m/z 414 for CYN and 237 for HEPES were monitored using the negative mode; the retention times of CYN and HEPES were 12.41 and 14.21 min, respectively. CYN was determined from peak area ratios of m/z 414/237. By the treatment of an anion exchange cartridge using a buffer at pH 10.5, CYN was isolated and condensed. No interfering peak was observed. Linearity of this method was observed at the range of 0.10-31.12 ng. Total coefficients of variation were 5.1 and 2.9% at 104 and 1038 μg CYN L−1. The quantitative limit at a signal-to-noise (S/N) ratio of 10 was 0.16 ng.CYN concentration in natural waters is low. CYN in waters should be condensed for determination. This method including the treatment for isolation and condensation of CYN is useful for determination of CYN in environmental and/or drinking waters.  相似文献   

11.
Sun Z  You J  Song C  Xia L 《Talanta》2011,85(2):1088-1099
A new labeling reagent for carboxylic acids, 2-(2-(anthracen-10-yl)-1H-phenanthro[9,10-d]imidazol-1-yl)ethyl 4-methylbenzenesulfonate (APIETS) has been designed and synthesized. It was used to label eight fatty acids (lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, oleic acid, linoleic acid and linolenic acid) and four hydroxy pentacyclic triterpene acids (oleanolic acid, ursolic acid, betulinic acid and maslinic acid), successfully. APIETS could easily and quickly label carboxylic acids in the presence of K2CO3 catalyst at 85 °C for 35 min in N,N-dimethylformamide solvent. The carboxylic acids derivatives were separated on a C8 reversed-phase column with gradient elution and fluorescence detection at λex/λem = 315/435 nm. Identification of these derivatives was carried out by online mass spectrometry with atmospheric pressure chemical ionization in positive ion mode. The detection limits obtained were 13.37-30.26 fmol (signal-to-noise ratio of 3). The proposed method has been applied to the quantification of carboxylic acids in sultana raisin (Thompson seedless), hawthorn flake (Crataegus pinnatifida Bge.), Lycium barbarum seed oil and Microula sikkimensis seed oil with recoveries over 95.3%. It has been demonstrated that APIETS is a prominent labeling reagent for determining carboxylic acids with high performance liquid chromatography.  相似文献   

12.
You J  Ming Y  Shi Y  Zhao X  Suo Y  Wang H  Li Y  Sun J 《Talanta》2005,68(2):448-458
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)+ under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of CO bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted derivatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono-1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)2. In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios ACBCEOC/ACCEOC = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was <10% of the expected concentration. Excellent linear responses were observed with coefficients of >0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples.  相似文献   

13.
We have developed a new immunosensor based on self-assembly chemistry for highly sensitive and label-free detection of 2,4,6-trinitrotoluene (TNT) using surface plasmon resonance (SPR). A monolayer of amine terminated poly(ethylene glycol) hydrazinehydrochloride (PEG-NH2) thiolate was constructed on an activated gold surface and immobilized with trinitrophenyl-β-alanine (TNPh-β-alanine) by amide coupling method. The binding interaction of a monoclonal anti-TNT Ab (M-TNT Ab) with TNPh-β-alanine immobilized thiolate monolayer surface was monitored and evaluated for detection of TNT based on the principle of indirect competitive immunoreaction. Here, the competition between the self-assembled TNT derivative and the TNT in solution for binding with antibody yields in the response signal that is inversely proportional to the concentration of TNT in the linear detection range. With the present immunoassay format, TNT could be detected in the concentration range from 0.008 ng/ml (8 ppt) to 30 ng/ml (30 ppb). The response time for an immunoreaction was 2 min and one immunocycle could be done with in 4 min including surface regeneration. Bound antibodies could be easily eluted from the self-assembled immunosurface at high recoveries (more than 100 cycles) using pepsin solution without any damage to the TNT derivatives immobilized on the surface. The compact self-assembled monolayer was highly stable and prevented the non-specific adsorption of proteins on the surface favoring error free measurement.  相似文献   

14.
A novel flow injection analysis (FIA) system based on liquid-liquid microextraction and fluorimetric determination was developed for the determination of traces of the Zn2+ ion using 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a sensitive and selective fluorimetric sensor, with λex = 373 nm and λem = 530 nm, and hexanol as the extracting organic solvent. In the designed FIA system, the phase separation takes place via gravitation forces in the absence of any segmenter. The influence of pH and ionic strength of the solution, amount of ligand, nature of counter ion, volume of organic solvent, extraction time and coil length was investigated. Under optimized experimental conditions, the calibration curve found to be liner over a concentration range of 0.025-4.53 μg mL−1 (R2 = 0.9951) with a limit of detection of 2.3 ng mL−1. The enrichment factor was 45 and relative standard deviation for 7 replicate determinations was 2.43%. The method is very fast and uses low levels of organic solvents. The proposed method was applied successfully to the determination of zinc(II) in human hair, human serum and two inorganic sludge samples.  相似文献   

15.
A micellar electrokinetic capillary chromatography (MEKC) method with laser-induced fluorescence detection (LIF) was developed for analyzing three phosphoamino acids including phosphotyrosine (P-Tyr), phosphoserine (P-Ser), and phosphothreonine (P-Thr). 3-(2-Furoyl)quinoline-2-carboxaldehyde (FQ), a fluorogenic dye, was employed for derivatization of these phosphoamino acids. Results indicated that the complete baseline resolution of each phosphoamino acid was obtained within 10 min, using 20 mmol l−1 sodium borate buffer (pH 9.35) containing 20 mmol l−1sodium deoxycholate (SDC) and 10 mmol l−1 Brij35. Other common amino acids, especially Glu and Asp, did not disturb the assay of these phosphoamino acids. There was a linear relationship between the peak area for analyte and its concentration, with correlation coefficients in the range of 0.9966-0.9996. The concentration detection limits (signal-to-noise = 3) for P-Tyr, P-Ser, and P-Thr were 10, 40, and 75 nmol l−1, respectively. The developed method was successfully applied for determining phosphoamino acids in the hydrolysis sample of a phosphorylated protein kinase.  相似文献   

16.
Huang KJ  Wang H  Guo YH  Fan RL  Zhang HS 《Talanta》2006,69(1):73-78
A new fluorescent probe 1,3,5,7-tetramethyl-2,6-dicarbethoxy-8-(3′,4′-diaminophenyl)-difluoroboradiaza-s-indacene (TMDCDABODIPY) has been developed to detect nitrite in meat products and vegetables. The fluorescence of TMDCDABODIPY is very weak, but when it reacts with nitrite, a strong fluorescent triazole forms in aqueous medium at room temperature, which offers the advantage of specificity and sensitivity for the determination of nitrite. The fluorescence intensity was linear over a nitrite concentration of 9-300 nmol l−1 with a detection limit of 0.21 nmol l−1 (S/N = 3). The proposed method has been used for the determination of trace nitrite in food products with the recoveries of 94.62-105.48%.  相似文献   

17.
A facile, sensitive and universal method was established for analysis of biogenic amines using micellar electrokinetic chromatography coupled with chemiluminescent (CL) detection. It was found that diperiodatocuprate (III) (K5[Cu(HIO6)2], DPC), a transition metal chelate at unstable high oxidation state, could effectively enhance the reaction between luminol-type compound and hydrogen peroxide, to produce very strong CL signal. In addition, triethylamine was found to be able to effectively improve the yield of the derivatization reaction between biogenic amines and a luminol-type derivatization reagent, N-(4-aminobutyl)-N-ethylisoluminol (ABEI). Based on these facts, three biogenic amines were pre-column derivatized with ABEI, and post-column detected using high sensitive luminol-hydrogen peroxide-DPC CL system. Since the background was quite low, and the signal was quite strong, a considerable improved sensitivity was obtained. The presented method had been successfully applied to simultaneously analyze glycine, proline and phenylalanine with the detection limits (S/N = 3) of 0.030 μmol L−1, 0.23 μmol L−1 and 0.21 μmol L−1, respectively. To evaluate its potential application value, glycine in saliva and urine samples was detected using this method, and satisfied results were obtained. This approach can be further extended to detection of many other compounds such as peptides and drugs by using luminol-type derivatization reagent.  相似文献   

18.
A new procedure for determination of biogenic amines (BA): histamine, phenethylamine, tyramine and tryptamine, based on the derivatization reaction with 2-chloro-1,3-dinitro-5-(trifluoromethyl)-benzene (CNBF), is proposed. The amines derivatives with CNBF were isolated and characterized by X-ray crystallography and 1H, 13C, 19F NMR spectroscopy in solution. The novelty of the procedure is based on the pure and well-characterized products of the amines derivatization reaction. The method was applied for the simultaneous analysis of the above mentioned biogenic amines in wine samples by the reversed phase-high performance liquid chromatography. The procedure revealed correlation coefficients (R2) between 0.9997 and 0.9999, and linear range: 0.10–9.00 mg L−1 (histamine); 0.10–9.36 mg L-1 (tyramine); 0.09–8.64 mg L−1 (tryptamine) and 0.10–8.64 mg L−1 (phenethylamine), whereas accuracy was 97%–102% (recovery test). Detection limit of biogenic amines in wine samples was 0.02–0.03 mg L−1, whereas quantification limit ranged 0.05–0.10 mg L−1. The variation coefficients for the analyzed amines ranged between 0.49% and 3.92%. Obtained BA derivatives enhanced separation the analytes on chromatograms due to the inhibition of hydrolysis reaction and the reduction of by-products formation.  相似文献   

19.
Spontaneous S-alkylation of methimazole (1) with 1,2-dichloroethane (DCE) into 1,2-bis[(1-methyl-1H-imidazole-2-yl)thio]ethane (2), that we have described recently, opened the question about its formation pathway(s). Results of the synthetic, NMR spectroscopic, crystallographic and computational studies suggest that, under given conditions, 2 is obtained by direct attack of 1 on the chloroethyl derivative 2-[(chloroethyl)thio]-1-methyl-1H-imidazole (3), rather than through the isolated stable thiiranium ion isomer, i.e., 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium chloride (4a, orthorhombic, space group Pnma), or in analogy with similar reactions, through postulated, but unproven intermediate thiiranium ion 5. Furthermore, in the reaction with 1, 4a prefers isomerization to the N-chloroethyl derivative, 1-chloroethyl-2,3-dihydro-3-methyl-1H-imidazole-2-thione (7), rather than alkylation to 2, while 7 further reacts with 1 to form 3-methyl-1-[(1-methyl-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8, monoclinic, space group P 21/c). Additionally, during the isomerization of 3, the postulated intermediate thiiranium ion 5 was not detected by chromatographic and spectroscopic methods, nor by trapping with AgBF4. However, trapping resulted in the formation of the silver complex of compound 3, i.e., bis-{2-[(chloroethyl)thio]-1-methyl-1H-imidazole}-silver(I)tetrafluoroborate (6, monoclinic, space group P 21/c), which cyclized upon heating at 80 °C to 7-methyl-2H, 3H, 7H-imidazo[2,1-b]thiazol-4-ium tetrafluoroborate (4b, monoclinic, space group P 21/c). Finally, we observed thermal isomerization of both 2 and 2,3-dihydro-3-methyl-1-[(1-methyl-1H-imidazole-2-yl)thioethyl]-1H-imidazole-2-thione (8), into 1,2-bis(2,3-dihydro-3-methyl-1H-imidazole-2-thione-1-yl)ethane (9), which confirmed their structures.  相似文献   

20.
Shirong Yuan  Yaqin Chai  Li Mao  Xia Yang  Yali Yuan  Huan Niu 《Talanta》2010,82(4):1468-11953
A simple and sensitive sandwich-type electrochemiluminescence immunosensor for α-1-fetoprotein (AFP) on a gold nanoparticles (nano-Au) modified glassy carbon electrode (GCE) was developed by using Ru-silica (Ru(bpy)32+-doped silica) doped Au (Ru-silica@Au) composite as labels. The primary antibody, anti-AFP was first immobilized on the gold nanoparticles modified electrode due to the covalent conjugation, then the antigen and the Ru-silica@Au composite nanoparticles labeled secondary antibody was conjugated successively to form a sandwich-type immunocomplex through the specific interaction. The surfaces of Ru-silica nanoparticles were modified via the assemble of Au nanoparticles. The prepared Ru-silica@Au composite nanoparticles own the large surface area, good biocompatibility and highly effective electrochemiluminescence properties. The morphologies of the Ru-silica@Au composite nanoparticles were investigated by using transmission electronic microscope (TEM). The Ru-silica@Au composite nanoparticles labeled anti-AFP/AFP/bovine serum albumin (BSA)/anti-AFP/nano-Au modified GCE electrode was evaluated by means of cyclic voltammetry (CV) and electrogenerated chemiluminescence (ECL). The immunosensor performed high sensitivity and wide liner for detection AFP in the range of 0.05-50 ng/mL and the limit detection was 0.03 ng/mL (defined as S/N = 3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号