首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
针对CO2热催化转化制甲醇过程中CO2吸附、活化较困难及副产物较多的问题,提出采用单原子Ge助剂修饰Cu(111)晶面的解决思路,通过密度泛函理论(DFT)计算研究了CO2在Ge-Cu(111)晶面上加氢合成甲醇的反应机理。结果表明,单原子Ge助剂的电子调控增加了与其相邻的 Cu 原子的电子云密度,使 CO2分子在含 Ge 活性界面上的吸附能力显著增强:CO2在 Ge-Cu(111)晶面上的吸附能约为Cu(111)晶面的1.5倍,约为Pd改性Cu(111)晶面的2.4倍,进而使逆水煤气变换(RWGS)反应路径速控步骤的活化能降低了近 20 kJ·mol-1,同时衍生出 3条生成甲醇的 RWGS新路径;此外,Ge-Cu(111)晶面上甲酸盐路径由于速控步骤活化能大幅上升而被禁阻,进而CO及烃类等副产物选择性大幅降低,Ge-Cu(111)晶面上CO2加氢制甲醇选择性升高。  相似文献   

2.
应用原子和表面簇合物相互作用的5参数Morse势方法(简称5-MP)构造推广的LEPS势对O2-Pt分子体系进行了系统的研究, 获得了O2分子在Pt的2个低指数面(111)和(110)重构面上的吸附几何、结合能和振动频率等临界点性质; 计算结果显示O2在Pt(111)面上难解离, 且存在超氧化吸附态, 同时, 应用表面分子解离限和晶面解离距的概念分析了(111)面上的解离机理; 并根据分子指纹性质, 将O2在Pt(110)缺行重构面上出现的振动频率860, 930, 1250 cm-1进行了合理的指派.  相似文献   

3.
采用广义梯度近似的密度泛函理论并结合平板模型的方法, 优化了糠醛分子在Pt(111)面的吸附模型,并探究了糠醛脱碳反应形成呋喃的机理. 结果表明: 吸附后糠醛分子环上的C―H(O)键及支链―CHO相对于金属表面倾斜上翘, 分子平面被扭曲, 易于呋喃的形成; 同时, 糠醛分子向Pt表面转移电子0.765e, 环中的大π键与Pt(111)表面的d轨道发生较强的相互作用, 使得糠醛的芳香性被破坏, 环上的碳原子呈现准sp3杂化. 此外, 对糠醛脱碳反应中的各反应步骤进行过渡态搜索, 通过比较各步骤的活化能, 得出糠醛更易先失去支链上的H形成酰基中间体(C4H3O)CO, 中间体继续脱碳加氢形成产物呋喃. 该过程的控速步骤为(C4H3O)CO*+*→C4H3O*+CO* (*为吸附位),活化能为127.65 kJ·mol-1.  相似文献   

4.
采用裸露簇和嵌入簇模型, 对β-MnO2 (001), (110), (111)三个晶面以及O2在(110)晶面的单址吸附模式(Pauling和Griffths模式), 进行从头计算. 从β-MnO2 (001), (110), (111)三个晶面的电子结构差异以及O2在(110)晶面吸附的吸附能、几何结构、集居数以及净电荷数分析得到: (001), (110), (111)三个晶面中(110)晶面的催化活性最高, 其活性顺序为(110)>(111)>(001). 氧气在(110)晶面的吸附, Pauling和Griffths两种吸附模式均存在, 属于化学吸附中的离子吸附. 氧气与MnO2固体间发生了单电子转移, 氧气得到电子被还原成O2-, 转移电子属于整个体系, 具有离域性.  相似文献   

5.
采用裸露簇和嵌入簇模型, 对β-MnO2 (001), (110), (111)三个晶面以及O2在(110)晶面的单址吸附模式(Pauling和Griffths模式), 进行从头计算. 从β-MnO2 (001), (110), (111)三个晶面的电子结构差异以及O2在(110)晶面吸附的吸附能、几何结构、集居数以及净电荷数分析得到: (001), (110), (111)三个晶面中(110)晶面的催化活性最高, 其活性顺序为(110)>(111)>(001). 氧气在(110)晶面的吸附, Pauling和Griffths两种吸附模式均存在, 属于化学吸附中的离子吸附. 氧气与MnO2固体间发生了单电子转移, 氧气得到电子被还原成O2-, 转移电子属于整个体系, 具有离域性.  相似文献   

6.
以K-MnO/γ-Al2O3和Cu/SiO2为催化剂, 利用固定床串联反应器实现了苯甲酸甲酯连续加氢合成无氯苯甲醇反应过程. K-MnO/γ-Al2O3和Cu/SiO2催化剂对于苯甲酸甲酯连续加氢合成苯甲醇具有良好的加氢活性, 反应转化率可达89.2%, 苯甲醇的选择性为84.1%. 在苯甲酸甲酯加氢连续步骤中的氢醛比得到提高, 有效地抑制了副产物甲苯的生成. XRD, SEM和TPR表征结果表明: 采用吸附沉淀法制备的Cu/SiO2-C15.2催化剂, 氧化铜在载体上具有良好的分散性能, 并且易于还原, 表现出最佳的苯甲醛加氢活性.  相似文献   

7.
采用高温固相法制备了不同阳离子掺杂的BaCe0.4Zr0.4M0.2O3-δ (M=In,Y,Gd,Sm)系列质子导体。运用X射线衍射仪、扫描电子显微镜分别对四类质子导体的物相结构、微观形貌进行了表征,应用IM6e型电化学工作站测定了其不同温度下的阻抗谱,并对样品在CO2和沸水中的稳定性进行了研究。结果表明:除Sm3+掺杂的质子导体有少量的杂质相Sm2O3外,其他3种均为单相立方晶钙钛矿结构;对CO2和沸水皆表现良好的化学稳定性;Y3+掺杂的质子导体具有高的电导率,800 ℃约为2.07×10-2 S·cm-1,空气气氛电导活化能为72.34 kJ·mol-1。  相似文献   

8.
本文报道了以原粉NaX和成型NaX为前体分别通过离子交换法及浸渍法制得的几种碱金属阳离子X型沸石上甲苯甲醇侧链烷基化反应的活性和选择性。并以NH3和CO2的微分吸附量热表征了这些催化剂的酸碱性。结果表明,在所有催化剂中成型KX的侧链反应活性最高。该催化剂对NH3的微分吸附热为45 kJ/mol左右,吸附覆盖度为3.3 μmol/m2;对CO2的微分吸附热在128~60 kJ/mol之间,吸附覆盖度为0.16 μmol/m2。对比其他三种酸性相近的催化剂,碱性更强(如K/KX(p)和K/KX(c))或更弱(如KX(p))时,侧链反应活性都较差。看来,成型KX催化剂的表面酸碱性匹配对侧链烷基化反应比较有利。该结果进一步证明了在甲苯甲醇侧链烷基化反应中催化剂酸碱协同作用的重要性。  相似文献   

9.
通过碱性水热-离子交换法制备了Cu、N共掺杂TiO2纳米管(Cu/N-TNT),对其光催化重整甘油制备合成气性能进行了研究。结果表明,Cu/N-TNT具有富含氧空位(OV)的管状结构,N以Ti-N形式取代部分O形成杂质能级,Cu以Cu2+形式掺杂在催化剂晶格间隙和表面,Cu、N共掺杂促进TiO2表面电荷有效分离,有利于其光催化重整甘油制备合成气活性和选择性的提高。紫外光照射8 h时,掺Cu量为0.15%的Cu/N-TNT催化剂上CO和H2产量分别为7.3和8.5 mmol·g-1,是原始TiO2的9.1和70.8倍,nH2/nCO从0.52提高为1.18,nCO/nCO2从0.21提高至0.42。Cu/N-TNT表面N和OV为醛类脱羰和甲酸脱水生成CO提供反应活性位点,Cu作为浅势阱提高光生电子-空穴分离效率。光生空穴(h+)是光催化重整甘油制备合成气过程中的主要活性物种,大量羟基自由基(·OH)和超氧自由基(·O2-)会导致甘油过度氧化,使CO选择性降低。  相似文献   

10.
采用沉淀结合渗析的方法,以钨酸钠、钨酸铵为原料,制备了不同形貌、具有择优取向的MxWO3·xH2O(M=Na+,NH4+,x<1)粉晶,利用SEM、XRD、TG、IR、XPS等手段对粉体进行表征,考察了不同渗析时间和焙烧温度对粉晶形貌、晶化程度及结构转变的影响。结果表明,长时间渗析后粉体的晶化程度明显提高,并沿(010)晶面方向择优生长,形貌由不规则形变为梭形和蝴蝶形。经空气气氛400 ℃焙烧后,NaxWO3·xH2O和(NH4)xWO3·xH2O粉晶均转变为沿(200)晶面方向择优生长的立方青铜相,且形貌也发生改变。  相似文献   

11.
Summary Zirconia-supported hydrogenation catalysts were obtained by activation of the amorphous precursors Cu70Zr30 and Pd25Zr75 under CO2 hydrogenation conditions. Catalysts of comparable compositions prepared by co-precipitation and wet impregnation of zirconia with copper- and palladium salts, respectively, served as reference materials. The catalyst surfaces under reaction conditions were investigated by diffuse reflectance FTIR spectroscopy. Carbonates, formate, formaldehyde, methylate and methanol were identified as the pivotal surface species. The appearance and surface concentrations of these species were correlated with the presence of CO2 and CO as reactant gases, and with the formation of either methane or methanol as reaction products. Two major pathways have been identified from the experimental results. i) The reaction of CO2/H2-mixtures on Cu/zirconia and Pd/zirconia primarily yields surface formate, which is hydrogenated to methane without further observable intermediates. ii) The catalytic reaction between CO and hydrogen yields -bonded formaldehyde, which is subsequently reduced to methylate and methanol. Interestingly, there is no observable correlation between absorbed formaldehyde or methylate on the one hand, and gas phase methane on the other hand. The reactants, CO2 and CO, can be interconverted catalytically by the water gas shift reaction. The influence of the metals on this system of coupled reactions gives rise to different product selectivities in CO2 hydrogenation reactions. On zirconia-supported palladium catalysts, surface formate is efficiently reduced to methane, which consequently appears to be the principal CO2 hydrogenation product. In contrast, there is a favorable reaction pathway on copper in which CO is reduced to methanol without C-O bond cleavage; surface formate does not participate significantly in this reaction. In CO2 hydrogenations on copper/zirconia, methanol can be obtained as the main product, from a sequence of the reverse water gas shift reaction followed by CO reduction.  相似文献   

12.
It is highly desired to achieve controllable product selectivity in CO2 hydrogenation. Herein, we report light-induced switching of reaction pathways of CO2 hydrogenation towards CH3OH production over actomically dispersed Co decorated Pt@UiO-66-NH2. CO, being the main product in the reverse water gas shift (RWGS) pathway under thermocatalysis condition, is switched to CH3OH via the formate pathway with the assistance of light irradiation. Impressively, the space-time yield of CH3OH in photo-assisted thermocatalysis (1916.3 μmol gcat−1 h−1) is about 7.8 times higher than that without light at 240 °C and 1.5 MPa. Mechanism investigation indicates that upon light irradiation, excited UiO-66-NH2 can transfer electrons to Pt nanoparticles and Co sites, which can efficiently catalyze the critical elementary steps (i.e., CO2-to-*HCOO conversion), thus suppressing the RWGS pathway to achieve a high CH3OH selectivity.  相似文献   

13.
ZrO2 has been found to be an effective photocatalyst for reduction of CO2 by hydrogen or methane at room temperature. The effective photon energy is less than the band gap energy of ZrO2 (5.0 eV), indicating that photoexcitation of bulk ZrO2 is not involved. The reaction is initiated by photoexcitation of surface carbonates derived from adsorption of CO2 to convert it to a CO2 radical, which in turn reacts with hydrogen or methane to form surface formate. The formate is stable at temperatures below 573 K, but works as a reductant of CO2 under photoirradiation. A new type of reaction mechanism is proposed.  相似文献   

14.
A Cu/Cr2O3 catalyst was prepared by co-precipitation method, studied in methanol dehydrocoupling to methyl formate in different gas streams and characterized by BET, XRD, TPR, TPD of NH3 and CO2, etc. The results demonstrate that the catalyst can catalyze the dehydrocoupling of methanol to methyl formate in high efficiency,e. g. 99% selectivity to methyl formate at 48% conversion of methanol. The results further indicate that metallic copper might be the active species for the formation of methyl formate  相似文献   

15.
Cu2O is an attractive catalyst for the selective reduction of CO2 to methanol. However, the mechanism of the reaction and the role of the Cu species in different oxidation states are not well understood yet. In this work, by first-principles calculations, we investigate the mechanism of the reaction on the Cu2O(110) surface, which is the most selective for methanol, in different degrees of reduction: ideal surface, slightly reduced surface (SRS), and partially reduced surface (PRS). The most favorable reaction pathways on the three surfaces were identified. We found that Cu(I) on the ideal surface is not capable of chemisorbing CO2, but surface oxygen serves as the active site which selectively converts CO2 to CH3OH with a limiting potential of −0.77 V. The Cu(0) on the SRS and PRS promotes the adsorption and reduction of CO2, while the removal of the residue O* becomes potential/rate limiting with a more negative limiting potential than the ideal surface. The SRS is selective to methanol while the PRS becomes selective to methane. The result suggests that the key to high methanol selectivity is to avoid the reduction of Cu(I), which provides a new strategy for the design of more efficient catalysts for selective CO2 reduction to methanol.  相似文献   

16.
采用基于密度泛函理论的第一性原理方法和平板模型研究了CH3SH分子在Cu(111)表面的吸附反应.系统地计算了S原子在不同位置以不同方式吸附的一系列构型, 第一次得到未解离的CH3SH分子在Cu(111)表面顶位上的稳定吸附构型,该构型吸附属于弱的化学吸附, 吸附能为0.39 eV. 计算同时发现在热力学上解离结构比未解离结构更加稳定. 解离的CH3S吸附在桥位和中空位之间, 吸附能为0.75-0.77 eV. 计算分析了未解离吸附到解离吸附的两条反应路径, 最小能量路径的能垒为0.57 eV. 计算结果还表明S―H键断裂后的H原子并不是以H2分子的形式从表面解吸附而是以与表面成键的形式存在. 通过比较S原子在独立的CH3SH分子和吸附状态下的局域态密度, 发现S―H键断裂后S原子和表面的键合强于未断裂时S原子和表面的键合.  相似文献   

17.
Catalytic methanol synthesis is one of the major processes in the chemical industry and may grow in importance, as methanol produced from CO2 and sustainably derived H2 are envisioned to play an important role as energy carriers in a future low‐CO2‐emission society. However, despite the widespread use, the reaction mechanism and the nature of the active sites are not fully understood. Here we report that methanol synthesis at commercially applied conditions using the industrial Cu/ZnO/Al2O3 catalyst is dominated by a methanol‐assisted autocatalytic reaction mechanism. We propose that the presence of methanol enables the hydrogenation of surface formate via methyl formate. Autocatalytic acceleration of the reaction is also observed for Cu supported on SiO2 although with low absolute activity, but not for Cu/Al2O3 catalysts. The results illustrate an important example of autocatalysis in heterogeneous catalysis and pave the way for further understanding, improvements, and process optimization of industrial methanol synthesis.  相似文献   

18.
Density functional theory calculations were carried out to investigate Cu12TM (TM = Co, Rh, Ir, Ni, Pd, Pt, Ag, Au) bimetallic metal catalysts for the mechanism of reverse water–gas shift (RWGS) reaction. The three possible reaction pathways relevant to the RWGS reaction are explored, including the CO2 dissociation, carboxyl, and formate mechanisms. Our results indicate that the RWGS reaction prefers to follow the CO2 dissociation mechanism on Cu12TM surfaces. A detailed potential energy diagram of the kinetically favored mechanism is presented that shows that the RDS of reaction are the formation of H2O and carboxyl (HOCO), formate (HCOO) dissociation, respectively. And, Cu12TM (TM = Co, Pt) are lower than other catalysts from the energy barrier of elementary step. Moreover, the catalytic behavior of a Cu12TM cluster is changed significantly due to the modifiers, via the electron transfer from TM to Cu-based cluster, and the activation barrier decreases with doped TM. The turnover frequency of the Cu12Co is the highest value, which thus is more efficiency catalyst to RWGS reaction. To gain insights into the synergistic effect in catalytic activity of the Cu12TM bimetallic cluster, a projected density of states analysis has been performed. Our works will be important for predicting the energetic trends and designing a better catalyst of RWGS reaction.  相似文献   

19.
Electrochemical CO2 reduction reaction (CO2RR) to chemical fuels such as formate offers a promising pathway to carbon-neutral future, but its practical application is largely inhibited by the lack of effective activation of CO2 molecules and pH-universal feasibility. Here, we report an electronic structure manipulation strategy to electron-rich Bi nanosheets, where electrons transfer from Cu donor to Bi acceptor in bimetallic Cu−Bi, enabling CO2RR towards formate with concurrent high activity, selectivity and stability in pH-universal (acidic, neutral and alkaline) electrolytes. Combined in situ Raman spectra and computational calculations unravel that electron-rich Bi promotes CO2 formation to activate CO2 molecules, and enhance the adsorption strength of *OCHO intermediate with an up-shifted p-band center, thus leading to its superior activity and selectivity of formate. Further integration of the robust electron-rich Bi nanosheets into III–V-based photovoltaic solar cell results in an unassisted artificial leaf with a high solar-to-formate (STF) efficiency of 13.7 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号