首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用二维晶格模型和相分离模型,由正规溶液理论首先推导出了二元表面活性剂形成混合胶束的分子交换能(ε~m)与混合胶束中组分A的超额化学位(μ^E~m~,~A)的关系式:μ^E~m~,~A=ε~m~gN~0(1-x~A)^2。然后导出ε~m与混合胶束中表面活性剂分子间的相互作用参数(β~m)的关系:ε~m=gRTβ~m/N~0。用该结论对皂荚素(GS)与十二烷基磺酸钠(C~1~2H~2~5SO~3Na)、十二烷基聚氧乙烯醚硫酸钠[C~1~2H~2~5(OC~2H~4)~3SO~4Na]、全氟辛酸钠(C~7F~1~5CO~2Na)、十二烷基脂肪醇聚氧乙烯(9)醚[C~1~2H~2~5(EO)~9OH]、辛基酚聚氧乙烯(10)醚[C~8H~1~7Ph(EO)~1~0OH]及十六烷基三甲基溴化铵(C~1~6H~3~3NMe~3Br)等表面活性剂混合体系的研究和计算表明:含皂荚素的二元表面活性剂形成的混合胶束,ε~m均为负值,表面活性剂分子间具有较强的协同效应。  相似文献   

2.
利用座滴法研究了两性离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基羧酸甜菜碱(n = 0, 3)和阳离子表面活性剂支链十六烷基(聚氧乙烯)n醚羟丙基季铵盐溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质,考察了表面活性剂类型、结构及浓度对接触角的影响趋势。研究发现,表面活性剂浓度低于临界胶束浓度(cmc)时,分子通过氢键以平躺的方式吸附到PMMA界面,亲水基团靠近固体界面, PMMA表面被轻微疏水化;表面张力和粘附张力同时降低,导致此阶段接触角随浓度变化不大。浓度高于cmc时,表面活性剂通过疏水作用吸附,亲水基团在外, PMMA表面被明显亲水改性,接触角随浓度升高显著降低。由于具有相同的支链烷基,表面活性剂类型变化和聚氧乙烯基团的引入对接触角影响不大。  相似文献   

3.
表面活性剂的电喷雾质谱分析   总被引:1,自引:0,他引:1  
采用不同的质谱采集模式分析了不同类型的表面活性剂。阳离子表面活性剂如氯化十二烷基二甲基苄基铵,适合正离子采集模式,准分子离子为其阳离子;阴离子表面活性剂如十二烷基苯磺酸钠,适合负离子采集模式,准分子离子为其阴离子;两性表面活性剂如氧化十四烷基二甲基胺,适合负离子采集模式,准分子离子为[M-H]^-;非离子表面活性剂如壬基酚聚氧乙烯(12)醚,适合正离子采集模式,准分子离子为[M+Na]^-。  相似文献   

4.
通过测定苄泽类非离子型表面活性剂Brij58、Brij76、Brij78与阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)、阴离子表面活性剂十二烷基硫酸钠(SDS)复配体系的表面张力,研究了复配体系的形成胶束能力、降低表面张力效率、降低表面张力能力3种增效作用,并结合复配体系中表面活性剂分子间的相互作用参数进行了深入的讨论。研究结果表明,与阳离子表面活性剂复配时,Brij76/CTAB体系增效作用最强;与阴离子表面活性剂复配时,Brij58/SDS复配体系增效作用最强,而且苄泽类非离子型表面活性剂与阴离子表面活性剂复配增效作用更加显著。  相似文献   

5.
PEP聚醚型非离子表面活性剂复配体系的研究   总被引:9,自引:1,他引:8  
主要讨论了聚氧丙烯-聚氧乙烯-聚氧丙烯(PEP)嵌段共聚醚型非离子表面活性剂分别与十二烷基硫酸钠(SDS0、十六烷基三甲基溴化铵(C16TAB)复配体系的水溶液的表面张力随浓度的变化及其盐效应的影响,计算了二元复配体系水溶液的表面吸附层分子相互作用参数(βσ)及胶束中分子相互作用参数(βm)的值,比较了复配体系的协同效应,并对结果作了理论解释。  相似文献   

6.
研究了十二烷基胺盐酸盐(DAC)和十二烷基聚氧乙烯硫酸钠(AES)复配体系的表面性质与胶束化行为.发现该体系在广泛的复配比例区间和温度区间内保持了极为优异的表面活性,测定了该体系的临界胶束浓度(cmc)与其对应的表面张力(γcmc)的具体值,并研究了温度、pH值和离子强度等环境因素对相关体系的影响.  相似文献   

7.
考察了非离子型表面活性剂烷基糖苷(APG)和两性表面活性剂十二烷基甜菜碱(BS-12)之间的复配性能,测定了不同摩尔比的APG和BS-12复配体系的表面张力、泡沫和乳化性能,并且研究了无机盐对复配体系表面活性的影响。结果表明,与单独任一表面活性剂体系相比,APG和BS-12复配体系具有较好的表面活性,呈现明显的协同增效作用;在摩尔比为3∶7时,复配体系的表面活性最高、起泡性能最好、形成的泡沫和乳状液最稳定,协同增效作用最显著。此外,无机盐的加入提高了复配体系的表面活性,当NaCl浓度为0.03mol/L时,表面张力和临界胶束浓度最小,表面活性最高;而对于无机盐,其离子价态越高,提高表面活性程度越明显;相比之下,阳离子提高复配体系表面活性的能力大于阴离子。  相似文献   

8.
添加剂对非离子十二烷基聚氧乙烯聚氧丙烯醚浊点的影响   总被引:12,自引:2,他引:10  
测定了无机盐、单元及多元醇、有机酸及离子型表面活性剂对3种非离子表面活性剂十二烷基聚氧乙烯聚氧丙烯醚C12H25(EO)m(PO)nH(LS36,m=3,n=6;LS45,m=4,n=5;LS54,m=5,n=4)浊点的影响.  相似文献   

9.
将长链烷基季氮和非高于烷氧链引入同一个分子中,合成了兼有阳离子和非离子表面活性剂特点的低聚合表面活性剂聚氧化丙烯-α-十六烷基二甲基氯化按(PPOCA)和聚氧化丙烯-α-十四烷基二甲基氯化铵(PPOTA)。研究了其基本性质,并试用作光度分析胶束增敏试剂。  相似文献   

10.
利用座滴法研究了阳离子表面活性剂十六烷基醚羟丙基季铵盐(C16PC)、十六烷基聚氧乙烯醚羟丙基季铵盐(C16(EO)3PC)和两性离子表面活性剂十六烷基醚羟丙基羧酸甜菜碱(C16PB)、十六烷基聚氧乙烯醚羟丙基羧酸甜菜碱(C16(EO)3PB)溶液在聚甲基丙烯酸甲酯(PMMA)表面上的润湿性质, 考察了表面活性剂类型及浓度对接触角的影响趋势. 研究发现: 低浓度条件下表面活性剂分子可能以平躺的方式吸附到固体界面, 且亲水基团靠近固体界面, PMMA表面被轻微疏水化; 在高浓度时则通过Lifshitz-van der Waals 作用吸附, 亲水基团在外, PMMA表面被亲水改性. 聚氧乙烯基团(EO基团)的引入对阳离子表面活性剂的接触角影响不大; 而含有聚氧乙烯基团的两性离子表面活性剂在PMMA界面上以类似半胶束的聚集体吸附, 大幅度降低接触角.  相似文献   

11.
使用烷基铝-乙酰丙酮-水体系催化环氧化合物的聚合,可得到分子量百万以上的聚合物,Kida采用三异丁基铝-强磷酸-N,N二甲基苯胺体系对环氧化合物进行催化聚合,Wolfe采用三烷基铝一乙酰丙酮-苯基噻唑-水体系对环氧化合物进行催化聚合,Kuran采用连苯三酚-二乙基锌对环氧丙烷进行催化,并且对聚合物作了13C-NMR谱的研究,1985年Bovey等研究了聚环氧丙烷的氢谱,确定了聚环氧丙烷各种异构体的构型。  相似文献   

12.
The solution behaviour has been investigated for an alcohol ethoxylate terminated with a formic acid ester. This compound has previously been reported to be an important degradation product in the auto-oxidation of alcohol ethoxylates. In this work we have investigated the solution behaviour of the formic acid ester surfactant C12H25(OCH2CH2)4OCHO (C12E4---OCHO). The pure formate was found to be sparsely soluble in water with no clear point at 0.1%. The critical micelle concentration was found to be 129 μM at 35°C, compared to 50 μM for the parent surfactant C12H25(OCH2CH2)5OH (C12E5). To mimic the behaviour of the oxidised surfactant, the formate was mixed in different ratios with C12E5 and the cloud point, surface tension and critical micelle concentration (cmc) of these mixtures were studied. The gradual increase of formate was found to shift the cloud point and isotropic regions to lower temperatures. The cmc of the mixture was found to be lower than for the pure surfactant. The favourable interaction was analysed according to the non-ideal model by Rubingh and the interaction parameter, β, was determined to be −4±0.53, which is unusually large for a mixture of two non-ionic surfactants. These results indicate that the reduction of cloud point observed during oxidation of non-ionic surfactants can in part be attributed to the formation of formate esters.  相似文献   

13.
Some alkali and alkaline earth metal salts of the amphiphilic anion [Fe(CN)4(H2O)(C12H25NH2)]2- have been synthesized by reaction of [Fe(CN)5NO]3- with C12H25NH2. Using optical microscopy, they have been shown to give a hexagonal (H1) mesophase in water.  相似文献   

14.
运用密度泛函(DFT)理论,采用Materials Studio 8.0,用GGA/BP方法研究了C_6H_2(OH)_3CH_3氧化成羟基苯甲酸的反应路径。结果表明,甲基上的氢原子被氧化成羟基以及羟基被氧化为醛基及醛基被氧化成羧基均为放热过程。分子C_6H_2(OH)_3CH_3中甲基氧化成羧基的主路径为三个氢原子氧化反应路径,其路径为C_6H_2(OH)_3CH_3+3O→C6H2(OH)3C(OH)3→C6H2(OH)3COOH+H2O,该路径受限于羟基直接被氧化成羧基过程,需克服130 k J/mol的反应势垒,反应速率常数对数ln(k)为-22.96 s-1;醛基、羟基优先被氧化成羧基的顺序为:-CHO-C(OH)3-HC(OH)2-H2C(OH);提高反应温度、氧气浓度均有利于羟基苯甲酸的生成,适当的催化剂有利于促进整个反应的进行。  相似文献   

15.
Rate constants for the tunneling reaction (HD + D → h + D2) in solid HD increase steeply with increasing temperature above 5 K, while they are almost constant below 4.2 K. The apparent activation energy for the tunneling reaction above 5 K is 95 K, which is consistent with the energy (91–112 K) for vacancy formation in solid hydrogen. The results above 5 K were explained by the model that the tunneling reaction was accelerated by a local motion of hydrogen molecules and hydrogen atoms. The model of the tunneling reaction assisted by the local motion of the reactans and products was applied to the temperature dependence of the proton-transfer tunneling reaction (C6H6 + C2H5OH → C6H7 + C2H5O) in solid ethanol, the tunneling elimination of H2 molecule of H2 molecule ((CH3)2 CHCH(CH3)2+ → (CH3)2 C = C(CH3)2+ + H2) in solid 2,3-dimethylbutane, and the selective tunneling reaction of H atoms in solid neo-C5H12-alkane mixtures.  相似文献   

16.
Two new open-framework gallium phosphites formulated as (C2N2H10)0.5Ga2(OH)(H2O)(HPO3)3(1) and (C3N2H5)2(C3N2H6)Ga8(H2O)6(HPO3)14(2) were hydrothermally synthesized in the presence of ethylenediamine(en) and imidazole as structure directing agents(SDA), respectively. Structural analyses reveal that the 3D structures of compounds 1 and 2 are both built up from the linkage of GaO6, GaO5(H2O) and HPO32? units by sharing vertices. The structure of compound 2 is constructed from well-known 4.6.12-net connecting layers in the AAAA stacking sequence, which are penetrated by the 1D Ga-O-P chains to form a 3D pillared-layered structure.  相似文献   

17.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


18.
以磷钼酸、 2-氨基吡啶、 五氧化二钒、 氯化锌和氯化镍等为主要原料, 采用水热方法合成了2个簇基超分子化合物[H3PMo12O40]2[C5H6N2]6(1)和[H2PMo12V2O42][C5H6N2]5·3H2O(2)(C5H6N2=2-氨基吡啶). 通过元素分析、 红外光谱、 紫外-可见光谱、 X射线光电子能谱、 热重分析、 X射线单晶衍射及X射线粉末衍射等手段对化合物进行了结构表征. 结构分析显示, 簇单元不同的2个超分子化合物以各自独特的堆积方式形成三维超分子网络. 利用苯乙烯的环氧化反应研究了2个化合物的催化性能.  相似文献   

19.
Reaction of YbI2 with two equivalents of cyclopentylindenyl lithium (C5H9C9H6Li) affords ytterbium(II) substituted indenyl complex (C5H9C9H6)2Yb(THF)2 (1) which shows high activity to ring-opening polymerization (ROP) of lactones. The reaction between YbI2 and cyclopentylcyclopentadienyl sodium (C5H9C5H4Na) gives complex [(C5H9C5H4)2Yb(THF)]2O2 (2) in the presence of a trace amount of O2, the molecular structure of which comprises two (C5H9C5H4)2Yb(THF) bridged by an asymmetric O2 unit. The O2 unit and ytterbium atoms define a plane that contains a Ci symmetry center.  相似文献   

20.
Interaction between binary surfactant mixtures containing anionic surfactants viz. sodium dodecyl sulphates (NaDS) and magnesium dodecyl sulphates (Mg(DS)2) and a nonionic surfactants viz. dodecyl dodecapolyethylene glycol ether (C12E12) and dodecyl pentadecapolyethylene glycol ether (C12E15) in water at different mole fractions (0–1) were studied by surface tension, viscometry and dynamic light scattering (DLS) methods. The composition of mixed micelles and the interaction parameter, β evaluated from the CMC data obtained by surface tension for different systems using Rubingh's theory were discussed. Activity coefficient (f1 and f2) of metal dodecyl sulphates (MDS)/C12Em (m = 12, 15) mixed surfactant systems were evaluated, which shows extent of ideality of individual surfactant in mixed system. The estimated interaction parameter indicates an overall attractive interaction in the mixed micelles, which is predominant for NaDS as compared to Mg(DS)2. Counter ion valency has specific effect on the mixed micelles, as Mg(DS)2 has less interaction with nonionic surfactants in comparison to NaDS due to strong condensation of counter ion. The stability factors for mixed micelles were also discussed by Maeda's approach, which was justified on the basis of steric factor due to difference in head group of nonionic surfactant. DLS measurements and viscosity data reveals the synergism in mixed micelles, showing typical viscosity trends and linearity in sizes were observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号