首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 139 毫秒
1.
用原位FT IR法比较了Cu ZrO2 和ZrO2 催化剂表面对CO及CO H2 的吸附行为。结果表明 ,CO在 5 0℃便可以在Cu ZrO2 表面形成b HCOO Zr、Zr COO- 和b HOCOOZr物种 ,吸附温度升高 ,b HOCOOZr逐渐分解生成Zr OH和CO2 ,而b HCOO Zr吸附物种逐渐增强。b HCOO Zr物种在Cu ZrO2 催化剂表面生成速率远远大于ZrO2 催化剂。在Cu ZrO2 催化剂表面 ,所形成的合成甲醇中间物种 (HCOO Zr和CH3O Zr)均和ZrO2 有关 ,意味着CO加氢反应主要在ZrO2 表面进行 ,铜组分主要向ZrO2 提供吸附CO及H2 物种。  相似文献   

2.
作为便携式电子设备的动力源,直接甲酸燃料电池(DFAFC)具有燃料跨界范围小、电动势大、甲酸无毒、低温下功率密度大等优点,因而引起了人们的极大兴趣.DFAFC商业化的主要挑战之一是阳极电催化剂材料的高成本和低CO耐受性.阳极通常需要高负载的贵金属电催化剂(Pt或Pd)氧化甲酸(HCOOH)以获得所需的电能.完全电氧化甲酸在Pt和Pd表面上会产生强吸附的CO,从而降低了Pt或Pd催化剂的活性.Pt和Pd储量少且价格昂贵,减少Pt和Pd含量且保持催化性能的燃料电池催化剂一直是研究者的奋斗目标.本文用周期性密度泛函理论(DFT)系统地研究了WC负载的单分子层Pd(Pd/WC(0001))催化剂对甲酸的分解机理,这可为所需的反应路径设计、筛选催化剂提供指导.Trans-HCOOH通过C-H,O-H,C-O键的活化发生分解.关于吸附,确定了可能反应中间体的最稳定吸附构型.trans-HCOOH,HCOO,mHCOO,cis-COOH,trans-COOH,CO,H2O,OH和H的吸附过程是化学吸附,而cis-HCOOH和CO2与Pd/WC(0001)表面的相互作用较弱,是物理吸附.此外,提出了trans-HCOOH分解的不同途径来探索分解机理.trans-HCOOH中O-H,C-H和C-O键的活化能垒分别为0.61,0.77和1.05 eV,O-H键断裂的能垒最小,则trans-HCOOH优先通过O-H键断裂生成HCOO.双齿HCOO是HCOOH分解的主要中间体,它可以转变为单齿HCOO,这条路线生成CO2的能垒比双齿HCOO的低0.04 eV.CO2是HCOO主要解离产物,这一步是总反应的决速步骤.对于cis-COOH和trans-COOH,CO是其主要解离产物.此外,trans-HCOOH也能直接生成CO,但克服的能垒较大.在Pd/WC(0001)表面上分解trans-HCOOH的最有利途径是HCOOH→HCOO→CO2,其中HCOO脱氢形成CO2的步骤是速率决定步骤.本文提供了HCOOH在Pd/WC(0001)表面上分解的活性中间体、能垒和机理的推测,CO形成主要是通过cis-COOH、trans-COOH及HCO的分解,CO2的形成主要是通过HCOO的分解,CO2占主导.该结论与Pd(111)面上甲酸分解结果一致,说明WC作为Pd载体没有改变Pd对甲酸的催化性能,但降低了Pd的使用量.综上,本文阐明了WC负载单分子层Pd催化剂上甲酸催化分解机理,得出甲酸分解的最佳反应路径,为直接甲酸燃料电池设计低贵金属含量、高活性的负载型Pd催化剂提供了理论指导;可用于预测不同载体负载Pd催化剂的性能,大大减少实验成本,以验证提出的实验假设.  相似文献   

3.
用TPD-MS,XPS,ESR,脉冲反应技术和活性测定等研究了CuO-ZnO-Al_2O_3催化剂上CO_2的加氢行为。结果表明,CO_2加氢的反应动力学行为与CO加氢有明显不同,反应产物只有CH_3OH和CO,完全没有烃类产生,也没有出现结炭失活现象。反应时,CO_2先与OH作用生成HCO_3和CO_3,再进一步加氢生成HCOO和HCO等中间物种。HCOO有多种吸附状态,只有一部份HCOO能进一步加氢,而HCO则很容易加氢生成CH_3OH。还原过程中,各中间物种的吸附位不尽相同,进一步反应需要的H的状态可能也不同。CO_2,CO和CH_3OH可能通过中间物种HCOO相互转化。催化剂的活性和选择性与Cu(Ⅰ)和Zn(Ⅰ)的数量密切相关。  相似文献   

4.
利用连续流动微反研究了Rh+Co/Al_2O_3催化剂的CO加氢反应.结果表明反应在220℃以上发生.反应活性随温度的升高和H_2/CO值的增加而增加.利用TP-IR动态方法研究了Rh+Co/Al_2_3上CO和H_2共吸附及其动态行为.结果表明在Rh+Co/Al_2O_3的孪生及线式中心上,CO和H_2室温共吸附时即有部分孪生及线式CO转化为相应的羰基氢化物.随温度的升高,剩余的孪生和线式CO继续向相应的羰基氢化物转化.而羰基氢化物则向多氢羰基氢化物转化.在到达反应温度之前,催化剂表面只存在羰基氢化物及相应的多氢羰基氢化物.在反应温度则导致产物CH_4生成.与CO加氢反应和CO歧化的吸附态研究结果相关联,作者认为在Rh+Co/Al_2O3上CO加氢生成CH_4是经由羰基氢化物-多氢羰基氢化物途径.  相似文献   

5.
采用密度泛函方法研究了Fe(100)表面Cu单层膜上CO的吸附,直接解离,氢助解离以及C-C偶合反应.相比洁净的Fe(100)表面,在Fe(100)的单层Cu膜上,CO的吸附和活化都减弱了.特别是,相比Fe(100)上CO的解离能垒1.08 eV,铜单层膜上CO解离能垒高达2.4 eV.在H原子共吸附的情况下,Fe(1...  相似文献   

6.
利用连续流动微反研究了Rh+Co/Al2O3催化剂的CO加氢反应, 结果表明反应在220℃以上发生, 反应活性随着温度的升高和H2/CO值的增加而增加。利用TP-IR动态方法研究了Rh+Co/Al2O3上CO和H2共吸附及其动态行为。结果表明在Rh+Co/Al2O3的孪生及线式中心上, CO和H2室温共吸附时即有部分孪生及线式CO转化为相应的羰基氢化物, 随着温度的升高, 剩余的孪生和线式CO继续向相应的羰基氢化物转化。而羰基氢化物则向多羰基氢化物转化。在到达反应温度之前, 催化剂表面只存在羰基氢化物及相应的多氢羰基氢化物。在反应温度则导致产物CH4生成。与CO加氢反应和CO歧化的吸附态研究结果相关联, 作者认为Rh+Co/Al2O3上CO加氢生成CH4是经由羰基氢化物-多氢羰基氢化物途径。  相似文献   

7.
利用连续流动微反研究了Rh+Co/Al2O3催化剂的CO加氢反应, 结果表明反应在220℃以上发生, 反应活性随着温度的升高和H2/CO值的增加而增加。利用TP-IR动态方法研究了Rh+Co/Al2O3上CO和H2共吸附及其动态行为。结果表明在Rh+Co/Al2O3的孪生及线式中心上, CO和H2室温共吸附时即有部分孪生及线式CO转化为相应的羰基氢化物, 随着温度的升高, 剩余的孪生和线式CO继续向相应的羰基氢化物转化。而羰基氢化物则向多羰基氢化物转化。在到达反应温度之前, 催化剂表面只存在羰基氢化物及相应的多氢羰基氢化物。在反应温度则导致产物CH4生成。与CO加氢反应和CO歧化的吸附态研究结果相关联, 作者认为Rh+Co/Al2O3上CO加氢生成CH4是经由羰基氢化物-多氢羰基氢化物途径。  相似文献   

8.
不同晶型结构的ZrO2在CO加氢制异丁烯反应中表现出不同的催化性能。尽管单斜相ZrO2在合成气制异丁烯反应中具有最优异的催化性能,但是对于其异构化活性位仍缺乏深入认识。通过研究ZrO2晶型结构对反应性能的影响差异,有利于深入认识ZrO2催化剂上合成气制异丁烯反应的关键影响因素。因此,本研究制备了一系列不同晶型结构的ZrO2催化剂,研究了它们在结构性质及催化CO加氢制异丁烯反应性能方面的差异。相对于四方相和无定型ZrO2,在单斜相ZrO2催化剂表面,有较多的配位不饱和的Zr位点和O位点。配位不饱和的Zr位点是CO吸附活化的位点,有利于CO的转化。而较多的不饱和配位的O位点,为异丁烯的生成提供了更多的碱性位。此外,在单斜相ZrO2催化剂表面,配位不饱和的Zr位点和O位点的存在,抑制了电子向反应中生成的甲酸盐物种转移,因此,甲酸盐物种在催化剂表面吸附较弱,有利于CO加氢生成异丁烯。  相似文献   

9.
徐坤  冯杰  褚绮  张丽丽  李文英 《物理化学学报》2014,30(11):2063-2070
利用密度泛函理论研究了γ-Mo2N(100)表面上的噻吩加氢脱硫(HDS)过程.噻吩在γ-Mo2N(100)表面上不同作用形式的结构优化结果显示,η5-Mo2N吸附构型最稳定,具有最大的吸附能(-0.56 eV),此时噻吩通过S原子与Mo2原子相连平行表面吸附在四重空位(hcp位).H原子和噻吩在hcp位发生稳定共吸附,hcp位是噻吩HDS的活性位点.噻吩在γ-Mo2N(100)表面进行直接脱硫反应,HDS过程分为S原子脱除和C4产物加氢饱和两部分.过渡态搜索确定了HDS最可能的反应机理及中间产物,首个H原子的反应需要最大的活化能(1.69 eV),是噻吩加氢脱硫的控速步骤.伴随H原子的不断加入,噻吩在γ-Mo2N(100)表面上优先生成―SH和丁二烯,随后―SH加氢生成H2S,丁二烯加氢饱和生成2-丁烯和丁烷.由于较弱的吸附,H2S、2-丁烯和丁烷很容易在γ-Mo2N(100)表面脱附成为产物.  相似文献   

10.
金催化是纳米催化的代表性体系之一,但对金催化作用的理解还存在争议,特别是金颗粒尺寸对其催化作用的影响.金颗粒尺寸减小导致的表面结构主要变化之一是表面配位不饱和金原子密度的增加,因此研究金原子配位结构对其催化作用的影响对于理解金催化作用尺寸依赖性具有重要意义.具有不同配位结构的金颗粒表面可以利用金台阶单晶表面来模拟.我们研究组以同时具有Au(111)平台和Au(111)台阶的Au(997)台阶表面为模型表面,发现Au(111)台阶原子在CO氧化、NO氧化和NO分解反应中表现出与Au(111)平台原子不同的催化性能.负载型Au颗粒催化甲酸氧化反应是重要的Au催化反应之一.本文利用程序升温脱附/反应谱(TDS/TPRS)和X射线光电子能谱(XPS)研究了甲酸在清洁的和原子氧覆盖的Au(997)表面的吸附和氧化反应,观察到Au(111)台阶原子和Au(111)平台原子不同的催化甲酸根氧化反应行为.与甲酸根强相互作用的Au(111)台阶原子表现出比与甲酸根弱相互作用的Au(111)平台原子更高的催化甲酸根与原子氧发生氧化反应的反应活化能.在清洁Au(997)表面,甲酸分子发生可逆的分子吸附和脱附.甲酸分子在Au(111)台阶原子的吸附强于在Au(111)平台原子的吸附. TDS结果表明,吸附在Au(111)台阶原子的甲酸分子的脱附温度在190 K,吸附在Au(111)平台原子的甲酸分子的
  脱附温度在170 K. XPS结果表明,分子吸附甲酸的C 1s和O 1s结合能分别位于289.1和532.8 eV.利用多层NO2的分解反应在Au(997)表面控制制备具有不同原子氧吸附位和覆盖度的原子氧覆盖Au(997)表面,包括氧原子吸附在(111)台阶位的0.02 ML-O(a)/Au(997)、氧原子同时吸附在(111)台阶位和(111)平台位的0.12 ML-O(a)/Au(997)、氧原子和氧岛吸附在(111)平台位和氧原子吸附在(111)台阶位的0.26 ML-O(a)/Au(997). TPRS和XPS结果表明,甲酸分子在105 K与Au(997)表面原子氧物种反应生成甲酸根和羟基物种,但甲酸根物种的进一步氧化反应依赖于Au原子配位结构和各种表面物种的相对覆盖度.在0.02 ML-O(a)/Au(997)表面暴露0.5 L甲酸时, Au(111)台阶位氧原子完全反应,甲酸过量.表面物种是Au(111)台阶位吸附的甲酸根、羟基和甲酸分子.在加热过程中,甲酸分子与羟基在181 K反应生成甲酸根和气相水分子(HCOOH(a)+ OH(a)= H2O + HCOO(a)),甲酸根在340 K发生歧化反应生成气相HCOOH和CO2分子(2HCOO(a)= CO2+ HCOOH).在0.12 ML-O(a)/Au(997)和0.26 ML-O(a)/Au(997)表面暴露0.5 L甲酸时,甲酸分子完全反应,原子氧过量.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基和原子氧.在加热过程中, Au(111)平台位和Au(111)台阶位的甲酸根分别在309和340 K同时发生氧化反应(HCOO(a)+ O(a)= H2O + CO2)和歧化反应(2HCOO(a)= CO2+ HCOOH)生成气相CO2, H2O和HCOOH分子.在0.26 ML-O(a)/Au(997)表面暴露10 L甲酸时,甲酸分子和原子氧均未完全消耗.表面物种是Au(111)平台位和Au(111)台阶位吸附的甲酸根、羟基、甲酸分子和原子氧.在加热过程中,除了上述甲酸根的氧化反应和歧化反应,还发生171 K的甲酸分子与羟基的反应(HCOOH(a)+ OH(a)= H2O + HCOO(a))和216 K的羟基并和反应(OH(a)+ OH(a)= H2O + O(a)).  相似文献   

11.
采用广义梯度近似(GGA)的密度泛函理论(DFT)(DFT-GGA)并结合平板模型, 研究了CO2在HCOO 修饰Cu(100)表面的吸附行为. 计算结果表明, 与清洁Cu(100)表面相比较, CO2在HCOO修饰的Cu(100)表面的吸附强度增强, 其线性对称性不存在. 究其原因可归结为HCOO的存在使CO2分子带有部分极性, 从而使其与Cu(100)表面的作用增强.  相似文献   

12.
为研究镍掺杂对铁基催化剂上二氧化碳加氢生成C_1和C_2烃类产物的影响,应用密度泛函理论进行了相关计算.在Fe(110)和Ni-Fe(110)表面上, CH~*物种是最有利的生成CH_4和C_2H_4的C_1物种(CH_x~*),其最可能的生成路径为CO_2→HCOO~*→HCO~*→CH~*.尽管CO_2直接解离为CO~*在动力学上相较于加氢生成HCOO~*和COOH~*是较为有利的,但CO~*进一步加氢生成HCO~*在能量上是不利的,其倾向于逆向解离回到CO~*. CH~*物种可以通过三步加氢反应生成CH_4或者经C—C耦合及两步加氢生成C_2H_4.在Fe(110)表面上,对甲烷和乙烯产物选择性起决定作用的基元反应能垒之间差异仅为0.10 eV,因此两者选择性相近.在将Ni原子引入Fe(110)表面后,生成甲烷与乙烯的选择性差异变大,导致乙烯的选择性提高.计算结果表明,添加少量金属Ni能够促进CO_2转化为CH~*,及两个CH~*物种发生C—C耦合和进一步加氢转化为乙烯.  相似文献   

13.
基于密度泛函理论, 采用广义梯度近似方法结合周期平板模型, 对Cu2O(111)非极性表面上CO和CH3O的吸附和共吸附进行了系统的研究. 计算了CO以4种吸附模式和CH3O以O端在Cu2O(111)表面上的吸附, 通过对不同吸附位置的吸附能、几何构型参数和Mulliken电荷的计算和比较发现, Cu2O(111)表面上配位未饱和铜离子(CuCUS)为CO的活性吸附位; 配位饱和铜离子(CuCSA)为CH3O的活性吸附位. CO和CH3O吸附于Cu2O(111)表面后, 表面弛豫现象明显改善. CO和CH3O与Cu2O(111)表面能够形成共吸附体系, CO和CH3O之间的相互作用力达到75.89 kJ/mol, 为典型的化学作用, 有助于促进CO和CH3O反应形成表面物种CH3OCO, 计算结果与实验事实一致.  相似文献   

14.
段园  陈明树  万惠霖 《物理化学学报》2018,34(12):1358-1365
采用高分辨电子能量损失谱(HREELS)、俄歇电子能谱(AES)和低能电子衍射(LEED)研究镍单晶表面氧物种及CO与O2的共吸附。实验结果表明,Ni(111)表面氧化后存在两种氧物种,位于54 meV能量损失峰的表面化学吸附氧物种和位于69 meV能量损失峰的表面氧化镍。首先,随着暴露氧量的增加,表面化学吸附氧物种的能量损失峰蓝移至58 meV;其次,通过真空退火及与CO相互作用考察,发现表面化学吸附氧物种较不稳定。在室温条件下,表面预吸附形成的表面化学吸附氧物种与CO共吸附,导致端位吸附CO增多,表明氧优先吸附在穴位上,随着CO暴露量的增加化学吸附氧物种与CO反应脱去;而表面氧化镍需在较高温度和较高CO分压下才能被CO还原。预吸附CO可被氧逐渐移去。  相似文献   

15.
CO在CeO2(111)表面的吸附与氧化   总被引:2,自引:0,他引:2  
采用密度泛函理论计算了CO在CeO2(111)表面的吸附与氧化反应行为. 结果表明, O2在洁净的CeO2(111)表面为弱物理吸附, 而在氧空位表面是强化学吸附, 且O2分子活化程度较大, O—O键长为0.143 nm. CO在CeO2(111)表面吸附行为的研究表明, CO在洁净表面及氧空位表面上为物理吸附, 吸附能均小于0.42 eV; 当表面氧空位吸附O2后, CO可吸附生成二齿碳酸盐中间体或直接生成CO2, 与原位红外光谱结果相一致. 表面碳酸盐物种脱附生成CO2的能垒仅为0.28 eV. 计算结果表明, 当CeO2表面存在氧空位时, Hubbard参数U对CO吸附能有一定的影响. CeO2载体在氧化反应中可能的催化作用为, 在氧气氛下, CeO2表面氧空位吸附O2分子, 形成活性氧物种, 参与CO催化氧化反应.  相似文献   

16.
The development of practical materials for (de)hydrogenation reactions is a prerequisite for the launch of a sustainable hydrogen economy. Herein, we present the design and construction of an atomically dispersed dual-metal site Co/Cu−N−C catalyst allowing significantly improved dehydrogenation of formic acid, which is available from carbon dioxide and green hydrogen. The active catalyst centers consist of specific CoCuN6 moieties with double-N-bridged adjacent metal-N4 clusters decorated on a nitrogen-doped carbon support. At optimal conditions the dehydrogenation performance of the nanostructured material (mass activity 77.7 L ⋅ gmetal−1 ⋅ h−1) is up to 40 times higher compared to commercial 5 % Pd/C. In situ spectroscopic and kinetic isotope effect experiments indicate that Co/Cu−N−C promoted formic acid dehydrogenation follows the so-called formate pathway with the C−H dissociation of HCOO* as the rate-determining step. Theoretical calculations reveal that Cu in the CoCuN6 moiety synergistically contributes to the adsorption of intermediate HCOO* and raises the d-band center of Co to favor HCOO* activation and thereby lower the reaction energy barrier.  相似文献   

17.
三种Au(111)催化水煤气变换反应机理的比较   总被引:1,自引:0,他引:1  
采用密度泛函理论对三种水煤气变换反应(WGSR)机理(氧化还原机理、羧基机理、甲酸基的生成机理)在Au(111)面上的反应历程进行详细讨论.通过对表面吸附物种(H2O、CO、OH、O、H、CO2、COOH、HCOO)的吸附行为进行研究,得到最佳活性吸附中心.对三种机理中的14个基元反应的活化能进行分析,得出WGSR在Au(111)上按照羧基机理和氧化还原机理进行的可能性较大,按照甲酸基的生成机理进行的可能性较小.相比较羧基机理和氧化还原机理,反应更有可能按照羧基机理进行,最佳反应途径为H2O-H→OH+CO→COOH+OH→CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号