首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
采用熔融冷却法制备了铕掺杂的硼铋钙玻璃。研究了不同硼铋比(nB/nBi)和钙离子浓度条件下的密度、摩尔体积、折射率等物理性质,分析了玻璃的结构、光学性质和热稳定性。实验结果表明,Eu3+较好的熔融于玻璃中,形成发光中心,在465 nm蓝光激发下,613 nm处有较为强烈的发射,光谱强度值随nB/nBi变化不明显,但随CaO浓度升高而逐渐递减。玻璃结构总体呈现非晶态,对称性相对较低,结构致密程度和对称性均随nB/nBi的降低而降低,随CaO浓度的升高而升高。玻璃结构主要组成为[BO3]三角体、[BiO3]三角体,[BO4]四面体和[BiO6]八面体,不存在[BO3]组成的硼六元环。研究结果表明,此系列硼铋钙玻璃能有效匹配蓝光芯片发射红光,且具有熔点低、热稳定较好、折射率相对适宜的特点。  相似文献   

2.
采用高温熔融法制备了Eu3+掺杂Y2O3-Al2O3-SiO2荧光玻璃,探讨了成分对该体系玻璃形成能力的影响,并对不同Eu3+掺杂浓度下的荧光性能进行了研究.结果表明,熔融温度为1500℃条件下,SiO2含量对该体系的玻璃形成能力影响明显,Y/Al摩尔比为3/5时,SiO2含量在52%-68%(摩尔分数)范围内时可以获得玻璃.掺杂Eu3+的Y2O3-Al2O3-SiO2玻璃具有荧光性能,在395nm波长激发下,在588 nm和614 nm处出现明显的发射峰.随着Eu3+掺杂浓度的增加,该荧光玻璃的发射波长不变,但发射强度有所变化;当Eu3+掺杂浓度为1.5%(摩尔分数)时,特征发射峰强度最大.  相似文献   

3.
采用魔角核磁共振(MAS NMR)研究了稀土掺杂B2O3-Al2O3-SiO2玻璃的结构及其组成和热处理等因素对玻璃结构的影响。研究发现,在B2O3-Al2O3-SiO2玻璃结构中,硼的配位主要是三角体[BO3]和[BO4],铝的配位主要是[AlO4],[AlO5]和少量的[AlO6]。随着B2O3-Al2O3-SiO2玻璃中BaO含量的增加,[BO3]逐渐向[BO4]转变,[AlO5]和[AlO5]也转变为[AlO4]。此外,由于稀土离子比钡离子更高的离子场强,其能够积聚硼氧结构使得其形成了巨大的网络结构。随着稀土掺量的增加,玻璃结构中的硅氧配位逐渐以Q4(3T)为主。热处理对玻璃结构中的硼氧和铝氧配位影响很小。  相似文献   

4.
高温固相烧结法制备了Er^3+:Yb^3+:Tm^3+共掺硼硅酸盐玻璃.在978nm半导体激光器抽运下,测量了样品在300~573K下光致发光谱强度随温度的变化,讨论了室温时上转换绿光和红光等波段的光谱劈裂.分析了Er^3+:Yb^3+和Tm^3+之间的能量传递机制.研究结果表明,当温度升高时,Er^3+:Yb^3+:Tm^3+共掺硼硅酸盐玻璃的481nm蓝光、517和534nm绿光、以及657nm红光等光致发光强度单调下降,在490K时几乎消失.但900nm左右的近红外光谱则随温度的升高而持续增强,而且其中心波长向短波方向移动.在室温时,光谱劈裂明显,高温时劈裂逐渐消失.  相似文献   

5.
制备了Tm3 /Yb3 共掺高折射率TiBa玻璃微球 ,玻璃基材主要成分为 :TiO2 ,BaCO3和SiO2 ,稀土 (% ,摩尔分数 )掺杂 0 5Tm2 O3和 3Yb2 O3。用 976nm激光激发测量了它们的上转换蓝光发射。利用光学微腔理论讨论了玻璃微球荧光光谱中的形貌共振 ,并用Mie理论公式对共振峰间隔进行了计算 ,实验结果与计算结果相符。  相似文献   

6.
制备了Tm^3 /Yb^3 共掺高折射率TiBa玻璃微球,玻璃基材主要成分为:TiO2,BaCO3和SiO2,稀土(%,摩尔分数)掺杂0.5Tm2O3和3Yb2O3。用976nm激光激发测量了它们的上转换蓝光发射。利用光学微腔理论讨论了玻璃微球荧光光谱中的形貌共振,并用Mie理论公式对共振峰间隔进行了计算,实验结果与计算结果相符。  相似文献   

7.
用高温熔融法制备了Ce/Tb/Sm三元共掺杂的CaO-B2O3-SiO2发光玻璃材料,并使用荧光分光光度计和CIE色度坐标对其光谱学和发光特性进行了研究.结果表明:在374nm激发下,在Ce/Tb/Sm三元共掺杂发光玻璃的发射光谱中同时观测到了蓝光、绿光和红橙光的发射带,这些发射带的混合实现了白光的全色发射显示.此外,Ce/Tb/Sm三元共掺杂发光玻璃的发光颜色随着Tb4O7含量的减小从绿光逐渐过渡到白光,显示出发光颜色的可调节性,极大地扩展了其在白光发光二极管中的应用.  相似文献   

8.
采用高温熔融法制备了Tm~(3+)/Er~(3+)/Ho~(3+)共掺的铋硅酸盐50SiO 2-40Bi_2O_3-5AlF_3-5BaF_2玻璃。研究了在808 nm激光器(Laser Diode)激发下Tm~(3+)/Er~(3+)/Ho~(3+)共掺的铋硅酸盐在2 060 nm处的发光性能,同时测试及分析了该铋硅酸盐玻璃的差热特性、吸收光谱及荧光光谱。根据吸收光谱以及Judd-Oflet理论,计算了Ho~(3+)的Judd-Oflet强度参数Ωt(t=2,4,6)以及Tm~(3+)/Er~(3+)/Ho~(3+)相应的吸收截面。铋硅酸盐玻璃中,Tm_2O_3、Er_2O_3和Ho_2O_3掺杂浓度分别为0.75%、1.0%和0.5%时,2 060 nm处Ho~(3+)∶5I7→5I8发射峰强度达到最大。对Tm~(3+)/Er~(3+)/Ho~(3+)3种离子的光谱性质和离子间可能存在的能量传递也做了分析。Ho~(3+)在1 953 nm处的最大吸收截面σabs为9.08×10-21 cm~2,在2 060 nm处的最大发射截面σem为1.168×10-20 cm~2,辐射寿命τmea为2.75 ms,具有良好的增益效应σemτ(3.212×10-20cm~2·ms)。  相似文献   

9.
Dy3+离子在硼磷酸锌玻璃中的发光性质   总被引:1,自引:0,他引:1  
Dy3 离子在可见光范围内的两个主发射分别起源于4F9/2→6H15/2的蓝光和4F9/2→6H13/2的黄光.4F9/2→6H13/2属于超灵敏跃迁,跃迁几率强烈受环境的影响,因此,两种跃迁的分支比随离子所处环境的变化而改变.通过高温熔融的方法制备一系列Dy2O3掺杂的ZnO-B2O3-P2O5玻璃,并计算了Dy3 离子发光的黄、蓝强度比和色坐标.结果表明:随着ZnO百分含量的增加,P2O5百分含量的减小,Dy3 离子发光的黄、蓝强度比减小,同时色坐标趋于白光;而B2O3的作用居中.进一步的研究发现,B2O3在玻璃中的存在方式[BO3]和[BO4]对Dy3 离子发光的黄、蓝强度比的作用不同.[BO3]使Dy3 离子发光的黄、蓝强度比增大,[BO4]则相反.通过固体核磁共振谱和红外光谱的测试,表明所研究的三元系ZnO-B2O2-P2O5玻璃样品,由于P2O5的含量较高,B2O3基本以[BO4]四面体为结构单元.因此Dy3 发光的黄、蓝比与玻璃的组成及百分含量之间存在着上述规律性.  相似文献   

10.
采用高温固相法制备了Sr_3Y(BO_3)_3:xTm~(3+),yDy~(3+)荧光粉,并通过XRD、SEM和荧光光谱仪对样品的物相、微观形貌、发光性能、能量传递机制和CIE色坐标进行了分析。结果表明:Sr_3Y(BO_3)_3:xTm~(3+)荧光粉在监测波长为359 nm时发射蓝光,Tm~(3+)的浓度淬灭点为x=0.08;在Sr_3Y(BO_3)_3:0.08Tm~(3+),yDy~(3+)荧光粉中,随着Dy~(3+)掺杂浓度的增加,Tm~(3+)的发光强度降低而Dy~(3+)发光强度却先增加后降低,Dy~(3+)的浓度淬灭点为y=0.1;通过改变Dy~(3+)掺杂浓度或改变激发光的波长,均可实现发射光的颜色可调;在Tm~(3+)-Dy~(3+)离子之间存在能量传递。当Dy~(3+)掺杂浓度(物质的量分数)为0.15时能量传递效率达75.14%,能量传递机制为电偶极-电偶极相互作用。  相似文献   

11.
Glasses with compositions 60Bi2O3–(40?x)B2O3–xGa2O3 (x = 5, 10, 15, 20 mol%) are prepared by conventional melting method. The thermal properties are investigated by differential thermal analysis (DTA) and the structures of the glasses were probed by Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The results show that density, refractive index and optical basicity increase with the increase of Ga2O3. The glass transition temperature (Tg), the onset crystallization temperature (Tx), ΔT (Tx?Tg) decrease with the content of Ga2O3. The cut-off edges in ultraviolet and infrared shift to longer wavelength with the increase of Ga2O3. On the other hand, the addition of Ga2O3 causes a progressive coordination number change of the boron atom from 3 to 4. XPS result indicates both Bi5+ and Bi3+ exist in 5 mol% Ga2O3 content, while Bi5+ amounts decrease with the increase of Ga2O3 contents. The glass is mainly composed of [BiO6], [BO3], [BO4] and [GaO4] polyhedra. Glasses are supposed to have layer structure. [BO3] triangle and [BO4] tetrahedra may be located between the [GaO4] tetrahedral and [BiO6] octahedra to prevent crystallization and to compensate electric charge.  相似文献   

12.
Glass samples with composition (70B2O3–29Bi2O3–1Dy2O3) modified with Barium titanate (BT), where BT is added in different successive weight percents, have been synthesized by conventional melt quenching technique. X-ray diffraction studies were performed in order to confirm the amorphous nature of the samples. The density of the samples has been found to decrease with an increase in the BT content, whereas an opposite trend has been observed in the molar volume. The analysis of FTIR and Raman spectra of the samples depicts that the glass network is built up of mainly BiO6, BiO3, BO3 and BO4 units. Its detailed analysis also revealed that the glass structure depends upon the amount of BT in the glass matrix and hence it acts as a modifier in the glass network. Introduction of BT into the glass matrix leads to the conversion of BO3 trigonal units into BO4 tetrahedral units, which results in a decrease in the degree of disorder in the glass network and makes the glass system more stable. The values of Urbach energy obtained for the prepared samples also confirmed the decrease in disorder in the glass network. The optical absorption measurements carried out for well-polished samples show a decrease in optical band gap energy with an increase in BT content whereas the molar refractivity shows the reverse trend. The Hydrogenic excitonic model applied to the studied glasses suggested that the present glass system favors direct transitions. The metallization criterion of the presently studied samples suggests that the prepared glasses may be potential candidates for nonlinear optical applications.  相似文献   

13.
Bismuth borate glasses containing phosphors and luminescent rare-earths are of interest for applications in light-emitting devices. Herein, the influence of CuO impurities on red-emitting Eu3+-doped bismuth borate glasses of the 25Bi2O3-15BaO-10Li2O-50B2O3 type was investigated by various spectroscopic methods. The glasses were prepared by the melt-quench technique and characterized by X-ray diffraction (XRD), Fourier transform-infrared (FT-IR) spectroscopy, UV/Vis optical absorption (OA), and photoluminescence (PL) spectroscopy including decay kinetics assessment. The XRD data confirmed the amorphous nature of the glasses whereas FT-IR spectra indicated the basic structural features of trigonal BO3 units and BO4 tetrahedra. The OA analysis showed that addition of CuO up to 0.5 mol% results in significant growth of the visible Cu2+ absorption band around 715 nm, with slight decrease in the optical band gap energies assessed through Tauc plots. A drastic PL quenching of Eu3+ ions emission was evidenced concurring with the detrimental effect of Cu2+. The assessment of the Eu3+ emission decay curves revealed significant lifetime decrease of the 5D0 emitting state with increasing CuO concentration. An analysis of quenching constants was finally performed comparing results from integrated PL data with the emission decay rates. It is argued that the bismuth borate glass system supports an effective Eu3+→Cu2+ energy transfer (more so than phosphates) in connection with a strong spectral overlap between Eu3+ emission and Cu2+ absorption.  相似文献   

14.
The glass transition temperature (Tg), density, refractive index, Raman scattering spectra, and X-ray photoelectron spectra (XPS) for xZnO-yBi2O3-zB2O3 glasses (x=10-65, y=10-50, z=25-60 mol%) are measured to clarify the bonding and structure features of the glasses with large amounts of ZnO. The average electronic polarizability of oxide ions (αO2−) and optical basicity (Λ) of the glasses estimated using Lorentz-Lorenz equation increase with increasing ZnO or Bi2O3 content, giving the values of αO2−=1.963 Å3 and Λ=0.819 for 60ZnO-10Bi2O3-30B2O3 glass. The formation of BOBi and BOZn bridging bonds in the glass structure is suggested from Raman and XPS spectra. The average single bond strength (BMO) proposed by Dimitrov and Komatsu is applied to the glasses and is calculated using single bond strengths of 150.6 kJ/mol for ZnO bonds in ZnO4 groups, 102.5 kJ/mol for BiO bonds in BiO6 groups, 498 kJ/mol for BO bonds in BO3 groups, and 373 kJ/mol for BO bonds in BO4 groups. Good correlations are observed between Tg and BMO, Λ and BMO, and Tg and Λ, proposing that the average single bond strength is a good parameter for understanding thermal and optical properties of ZnOBi2O3B2O3 glasses.  相似文献   

15.
The aim of the current report is to fabricate Eu3+-doped glasses with the chemical composition of 50Li2O-15Gd2O3-5Bi2O3-(30-x)B2O3-xEu2O3 (where x = 0.5, 1.0, 1.5, 2.0 and 2.5 mol%), with the help of conventional melt quenching technique. The fabricated glasses have been studied with help of physical, structural and luminescence properties for application of LEDs. The structural properties were investigated by XRD and FTIR spectra. Physical properties have been measured. Direct and indirect optical energy band gap (Eg) have been calculated and found to be increasing with Eu2O3 concentration. Luminescence spectra have been observed from photo and radioluminescence spectra and found in good agreement with each other, however the concentration quenching was not determined for the samples. The high-covalence and asymmetric nature was confirmed from Photoluminescence emission and RL emission transition as well as from the higher values of luminescence intensity ratio. The JO parameters have been found for the better performance of lasing materials. The lifetime's data have been found to be decreasing from 1.64 to 1.50 ms, which is the confirmation of energy transfer in Eu3+ ions through cross relaxations. From the calculated properties it has been suggested that the present glass samples might be good for red-light emitting devices.  相似文献   

16.
Single crystals of bismuth oxoborate Bi4B2O9 have been grown by slowly cooling the melt of a stoichiometric Bi2O3 + H3BO3 mixture. The structure of the borate (monoclinic space group P21/c, a = 11.107 Å, b = 6.629 Å, c = 11.044 Å, β = 91.04°, Z = 4) has been studied at 20, 200, and 450°C. The structure is described not only in terms of full BiO6 ? and BiO7 polyhedra but also in terms of truncated BiO3 ? and BiO4 ? polyhedra and BO3 triangles, as well as oxo-centered OBi3 triangles and OBi4 tetrahedra. It is shown that both the B-O and Bi-O bond lengths are practically unaffected by temperature. Only the angles between polyhedra change with temperature, being responsible for the strong anisotropy of Bi4B2O6 thermal expansion, which was measured by high-temperature powder X-ray diffraction: α11 = 20, α22 = 15, α33 = 6 × 10?6 °C?1, and μ = (c, α33) = ?19°.  相似文献   

17.
The ultrasonic parameters, the optical parameters along with the IR spectroscopy and magnetic susceptibility studies have been employed to explore the role of Gd2O3 in the structure of the glasses xGd2O3–60B2O3–10MoO3–(30-x)Bi2O3, with 0 ≤ x ≤ 7 mol %. IR analysis indicates that Gd2O3 is preferentially incorporated into the borate network-forming BO4 units. It is assumed that Bi2O3 and MoO3 enter the structure as modifiers in the form of BiO6 and MoO6 only. The compositional dependence of the mechanical and the optical parameters are interpreted in terms of the transformation of the structural units BO3 into BO4, the increase in the number of bridging oxygen atoms, and the substitution of high bond strength Gd–O, in the place of low bond strength Bi–O bond. The results of the magnetic susceptibility reveal the paramagnetic behavior as described by the Curie-Weiss law and indicating the presence of weak antiferromagnetic exchange interactions between Gd3+ ions. The magnetic entropy change of the glasses was determined according to the temperature and magnetic field dependence of magnetization.  相似文献   

18.
The article presents a simple method that can be used to get the concentration of various species in mixed-modifier borate glasses. By using the fraction of four coordinated boron in xCaO (30  x)Na2O70B2O3 (0  x  27.5 mol%) and xCaO(40  x)Na2O60B2O3 glasses (10  x  40 mol%), the concentration of BO4 and asymmetric BO3 units related to each modifier oxide could be determined. CaO has a greater tendency to form asymmetric BO3 units in the first glass series, while Na2O has the ability to form BO4 units to a greater extent. In xCaO(40  x)Na2O60B2O3 glasses, BO4 and asymmetric BO3 units are formed at the same rate from Na2O and CaO. The fraction of four coordinated boron, can be predicted by treating the studied glasses as if they are mixtures of Na2O–B2O3 and CaO–B2O3 matrices. The change in N4 is due to change in the relative concentration of these matrices.  相似文献   

19.
Borate glasses doped with trivalent europium were prepared by the conventional melt quenching technique, in the chemical composition of (49.99-x)B2O3 + 25Li2O + 25LiF+xEu2O3 by varying the concentration of the rare earth ion in the order 0.01, 0.1, 1, 2 and 3 wt% and their structural, luminescence and thermal behavior have been reported. The XRD and FTIR spectra reveal the glass structure and the functional groups. The UV–VIS, luminescence spectra and lifetime of the Eu3+ ions were measured. The local site symmetry around the Eu3+ ions were evaluated through the luminescence intensity ratio (R) of the 5D0 → 7F2 to 5D0 → 7F1 transitions. Optical measurements have been carried out to explore the optical properties such as bonding parameters, Judd–Ofelt parameters, stimulated emission cross-section, transition probability, branching ratio, radiative lifetime, etc. The lifetime measurements of the 5D0 level as a function of the concentration of Eu3+ ion have been found and is comparable to other reported for Eu3+ doped borate, phosphate glasses and higher than that for the tellurite glasses. The thermal properties such as glass transition, crystallization and melting temperatures of the Eu3+ glasses were studied through the DSC traces in the temperature range of 30−1200 °C at a heating rate of 10 °C per minute. The change in optical properties with the variation of Eu3+ ion concentration have been discussed and compared with similar results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号