首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
ZnO nanoparticles(NPs)with different contents of Ag dopants were obtained by one-step solvothermal method.The crystalline structures of the prepared composites were characterized by means of X-ray diffraction(XRD).The morphology and composition of the samples were studied by means of scanning transmission electron microscopy(TEM)5 X-ray photoelectron spectroscopy(XPS)and electron microscopy(SEM).Photoluminescence(PL)spectra have been used to investigate pure ZnO,Ag-ZnO and Ag-ZnO-PVP NPs to determine the effect of composition on PL properties.It was found that the Ag-ZnO samples showed stronger emissions than pure ZnO.The catalytic activity of samples was measured by the degradation rate of R6G,which exhibited that Ag-ZnO nanocomposite demonstrated enhanced photocatalytic activity compared to the pure ZnO NPs.The possible influence factors to the photocatalytic and antibacterial activities of the sample were explored,including Ag contents and dispersion.It was presented that the photocatalytic activity of Ag-ZnO-PVP was better than that of Ag-ZnO and it showed the highest photocatalytic activity with 7%of Ag content.The Ag-ZnO-PVP can kill the Escherichia coli(E.coli)cells.  相似文献   

2.
<正>Porous TiO_2/ZnO composite nanofibers have been successfully prepared by electrospinning technique for the first time.It was generated by calcining TiO_2/ZnCl_2/PVP[PVP:polyvinyl pyrrolidone)]nanofibers,which were electrospun from a mixture solution of TiO_2,ZnCl_2 and PVP.Transmission electron microscopy(TEM) and X-ray diffraction(XRD) analyses were used to identify the morphology of the TiO_2/ZnO nanofibers and a formation of inorganic TiO_2/ZnO fibers.The porous structure of the TiO_2/ZnO fibers was characterized by N_2 adsoption/desorption isotherm.Surface photovoltage spectroscopy(SPS) and photocatalytic activity measurements revealed advance properties of the porous TiO_2/ZnO composite nanofibers and the results were compared with pure TiO_2 nanofibers,pure ZnO nanofibers and TiO_2/ZnO nanoparticles.  相似文献   

3.
Spherical strontium carbonate was synthesized by the induction of microbial bacillus pasteurii at ambient temperature with strontium chloride and urea as the raw materials. The phase composition, particle size and morphology of the product were studied by XRD and SEM. The results indicated that the strontium carbonate synthesized by the induction of microbial bacillus pasteurii was of good dispersion and uniform particle size. The spherical strontium carbonate particles obtained by adding different control agents were constructed by numerous flakes or olive-shaped nano-particles. The products were orthorhombic according to their XRD patterns.  相似文献   

4.
The freshly prepared water-wet amidoximated bacterial cellulose (Am-BC) serves as an effective nanoreactor to synthesis zinc oxide nanoparticles by in situ polyol method. The obtained ZnO/Am-BC nanocomposites have been characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The influence of the zinc acetate concentration on the morphologies and size ofZnO nanoparticles and the possible formation mechanism were discussed. The results indicated that uniform ZnO nanoparticles were homogeneously anchored on the Am-BC nanofibers through strong interaction between the hydroxyl and amino groups of Am-BC and ZnO nanoparticles. The loading content of ZnO nanoparticles is higher using Am-BC as a template than using the unmodified bacterial cellulose. The resultant nanocomposite synthesized at 0.05 wt% shows a high photocatalytic activity (92%) in the degradation of methyl orange.  相似文献   

5.
The reaction of zinc oxide with methane in the absence and presence of CO2 were theoretically and experimentally investigated using HSC Chemistry 5.1 software and a fixed bed reactor, respectively. In the absence of CO2 at 1193 K, the reduction of ZnO was accompanied with methane cracking, and metallic zinc, CO, and H2 were the main reaction products. This system could be utilized for the co-production of metallic zinc and synthesis gas, in which ZnO was a donor of oxygen. In the presence of CO2, ZnO plays as a catalyst in the CO2 reforming of methane and produces syngas with the average H2/CO ratio of 0.88 at 1193 K, which was close to the total reaction theoretic value of 1. It was also found that higher temperature favored high CH4 and CO2 conversions. XRD technique was used to characterize the ZnO species. The result showed that there were no differences in the peak profiles of the XRD patterns of the ZnO powder obtained before and after passing the CH4/CO2 mixed gases for 6 h at 1193 K. It is suggested that ZnO functions as a catalyst according to the redox cycle and metallic zinc plays the role of intermediate product in this process.  相似文献   

6.
Aqueous colloidal dispersions containing Znx Cd1‐x S quantum dots (QDs) of different x compositions were prepared by precipitating zinc and cadmium acetates with sodium sulphide,in the presence of a cetyltrimethylammonium bromide stabilizer.Ultraviolet‐visible absorption spectroscopy was used to determine the transition energies of the QDs,which in turn were used to calculate their sizes,which depended on their composition.The QD size decreased with increasing Zn content.The photocatalytic activity of the Znx Cd1‐x S QDs was studied by the decomposition of methylene blue under ultraviolet irradiation,at a maximum intensity at 365 nm (3.4 e V).Three different photo‐catalytic activity regions were observed,which depended on the Zn content.The quantum levels of the QDs could be excited by incident irradiation,and influenced the resulting photocatalytic activity.Maximum photocatalytic activity was achieved at x = 0.6,where the QD transition energy was equal to the irradiation photon energy.The photocatalytic efficiency of the QDs depended on their surface area and arrangement of quantum levels,because of the quantum size effect.  相似文献   

7.
CdIn2S4 microspheres were synthesized by a facile hydrothermal method with the temperature ranging from 120 to 200 ℃. X-ray diffraction, UV-vis diffuse reflectance spectroscopy, nitrogen sorption analysis, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy were used to characterize the products. It was found that the crystallographic structure and optical property of the products synthesized at different temperature were almost the same. The SBET of CdIn2S4 products decreased when the synthesized temperature increased, and the largest SBET was 33.16m2g-1 (120 ℃ sample). The degradation of methyl orange (MO) under the visible-light irradiation had been used as a probe reaction to investigate the photocatalytic activity of the as-prepared CdIn2S4, which showed that the CdIn2S4 sample synthesized at 120 ℃ presented the best photocatalytic activity for MO degradation.  相似文献   

8.
After synthesis of an asymmetric tetradentate ONN0O0 Schiff base ligand(H2L) followed by reaction of the synthesized H2 L with an equimolar mixture of methanolic solutions of the VO(acac)2, a new oxidovanadium(IV) Schiff base complex(VOL) was synthesized. The Schiff base ligand and its complex were characterized by FT-IR and UV–vis spectra and C, H, N analysis. The crystal structure of VOL was also determined by single crystal X-ray analysis. The VOL complex crystallizes in monoclinic space group Cc. The Schiff base ligand acts as a tetradentate ligand through its two iminic nitrogens and two phenolic and acetylacetonate oxygens. Thermogravimetric analysis of the VOL showed that it decomposes in two steps and converts to mixed vanadium oxides at 477 8C. In addition, thermal decomposition of the VOL complex in air at 660 8C leads to formation of V2O5 nanoparticles with the average size estimated from XRD 49 nm. The catalytic activity of the VOL complex was investigated in the epoxidation reaction and different reaction parameters were optimized. The results showed that the cyclic alkenes were efficiently converted to the corresponding epoxides, whereas the VOL did not appreciably convert the linear alkenes.  相似文献   

9.
Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in cerium(Ⅳ), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (Ⅳ) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was reactive form of cerium (Ⅳ). From the kinetic data, micelle-cerium (Ⅳ) binding and rate constants in micellar medium were evaluated.The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression: --d[Ce(Ⅳ)]= k1Kcl[D-mannose] [Ce(Ⅳ)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.  相似文献   

10.
The laminated porous N-deficient g-C_3N_4(CN–H)is successfully synthesized by a facile two-step hydrothermal calcination method using oxalic acid-assisted melamine as the precursor.Compared with pristine g-C_3N_4(224μmol g~(-1)h~(-1)),the CN–H shows superior photocatalytic hydrogen production activity(up to 728μmol g~(-1)h~(-1)),which is three times higher than the unmodified counterpart.To draw out the multifaceted influences of oxalic acid modification on the visible-light-induced photocatalytic activity,various techniques are utilized to investigate the formation mechanism,structural characteristics and photoelectrical properties of CN–H.The results indicate that the addition of a trace amount of oxalic acid to the precursor melamine results in a g-C_3N_4 structure possessing the advantage of both nitrogen defects and laminated porosity.These properties can enlarge specific surface areas of g-C_3N_4,enhance an efficient separating of photogenerated electron-hole pairs and extend the range of spectral response,all contributing to the enhancement of the visible-light-induced photocatalytic activity.  相似文献   

11.
本文以油菜花粉为生物模板,硝酸锌为锌源制备了一种分级多孔结构的纳米氧化锌。采用SEM、TEM、XRD和 FTIR等技术手段对其进行了表征。实验结果表明,采用油菜花粉为生物模板制备的氧化锌纳米材料为六方纤锌矿结构,较好的复制了花粉的分级多孔结构。同时,研究了制备条件诸如煅烧温度和反应物浓度对产物结构、形貌和尺度的影响。  相似文献   

12.
Hydrothermal synthetic method has been used to prepare complex [ZnL]n (1) (H2L = 4-[(1H-imidazol-4-yl)methylamino]benzoic acid) as spherical microparticles. Slow morphological changes from small spindle-shaped particles to smoother spherical particles in the growth process of complex 1 were observed. Subsequently complex 1 was used as precursor as well as sacrificial template to synthesize hexagonal ZnO nanomaterials by calcination in air. The structure of the final products and the formation process were characterized by measurements of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The formation mechanism of the final nanorods was proposed on the basis of the structural change of complex 1 in the calcination process. The photocatalytic properties of complex 1 and prepared ZnO have also been studied, and the results showed that all these nano-/micromaterials have photocatalytic properties and ZnO formed under lower calcinated temperature has higher photocatalytic activity.  相似文献   

13.
以七水硫酸锌、氢氧化钠为原料,采用室温一步固相反应合成ZnO纳米粒子,并分别利用X射线衍射分析(XRD)、傅里叶变换红外光谱分析(FTIR)、热重分析(TG)、扫描电子显微分析(SEM)、透射电子显微分析(TEM)、N2吸附-脱附、紫外可见漫反射光谱分析(UV-Vis DRS)等方法对ZnO纳米粒子进行表征。实验结果表明:不需任何添加剂,室温下可通过一步固相反应合成ZnO纳米粒子,其形成过程首先是ZnSO4·7H2O和NaOH充分接触,然后反应形成Zn4SO4(OH)6·5H2O,最后NaOH的溶解热可使Zn4SO4(OH)6·5H2O转变为ZnO并逐渐长大形成纳米粒子。同时以甲基橙为降解对象评价了ZnO纳米粒子的光催化活性,实验结果表明:紫外光照射下,该方法合成的ZnO纳米粒子对甲基橙具有较好的光催化活性,且光催化动力学方程符合准一级反应动力学。  相似文献   

14.
基于纳米ZnO/聚氯乙烯的复合材料光催化性能研究   总被引:11,自引:0,他引:11  
本文采用纳米氧化锌与聚氯乙烯溶液共混制备了复合材料前驱体,运用TG-DTA联机分析得到了其分解温度及相关热分解数据;经适当温度煅烧后得到复合材料光催化剂,并用TEM、XRD、FTIR、UV-Vis、ESR对复合材料进行分析表征。在室内普通照明用荧光灯作用下,以甲基橙溶液为催化对象,对复合材料的光催化性能进行了检测,并在相同条件下,与纳米氧化锌、纳米氧化钛及聚氯乙烯直接煅烧产物的光催化性能进行了比对分析;同时研究了pH值对复合材料光催化性能的影响。研究结果表明,复合材料对甲基橙催化降解8 min后,甲基橙溶  相似文献   

15.
本文用X射线衍射和X射线光电子能谱法研究了用浸渍法制取的ZnO/γ-Al_2O_3样品。实验表明, ZnO 极易与γ-Al_2O_3发生固相反应, 经240 ℃烘烤就可以观察到反应的进行。样品的结构和形态依其组成和焙烧条件而异。氧化锌含量较低的样品由缺锌铝酸锌构成, 基表相Zn浓度取决于样品组成和焙烧温度。氧化锌含量较高的样品分两种情况: 低温焙烧的样品由Zn_xAl_2O_(3+x)(x<1)和晶相ZnO构成; 高温焙烧的样品可生成化学计量比的ZnAl_2O_4, 其上还单层分散着一层ZnO。仅当ZnO/ZnAl_2O_4中ZnO的含量超过此分散量时, 才有晶相ZnO析出。  相似文献   

16.
将镁铝层状双氢氧化物分散在锌盐与尿素的混合液中,加热使尿素水解、锌离子沉淀,经洗涤、干燥、煅烧,再用碳酸钠溶液浸渍、煅烧,得到还原后的氧化锌/镁铝复合氧化物。用X-射线衍射(XRD)、透射电子显微镜(TEM)、氮等温吸附和傅里叶红外光谱(FTIR)等方法对所制备的氧化锌/镁铝复合氧化物的结构和性能进行了表征。以酸性红G为模型污染物评价了其去除效率及光催化活性。碳酸钠还原处理过的氧化锌/镁铝复合氧化物结构发生了改变,氧化锌的晶粒变小,复合氧化物变成了片状结构,其对酸性红G的去除效率也明显提高,质量比为2∶1的氧化锌/镁铝复合物经还原后表现出了良好的光催化活性。  相似文献   

17.
Magnetite zinc oxide (MZ) (Fe3O4/ZnO) with different ratios of reduced graphene oxide (rGO) was synthesized using the solid-state method. The structural and optical properties of the nanocomposites were analyzed using transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectroscopy (UV–Vis/DRS), and photoluminescence (PL) spectrophotometry. In particular, the analyses show higher photocatalytic movement for crystalline nanocomposite (MZG) than MZ and ZnO nanoparticles. The photocatalytic degradation of methylene blue (MB) with crystalline ZnO for 1.5 h under visible light was 12%. By contrast, the photocatalytic activity for MZG was more than 98.5%. The superior photocatalytic activity of the crystalline nanocomposite was detected to be due to the synergistic effect between magnetite and zinc oxide in the presence of reduced graphene oxide. Moreover, the fabricated nanocomposite had high electron–hole stability. The crystalline nanocomposite was stable when the material was used several times.  相似文献   

18.
In this work, a high-performance photocatalyst of ZnO/graphene-oxide (ZnO/GO) nanocomposite was synthesized via a facile chemical deposition route and used for the photodegradation of organic dye from water under visible light. The nanocomposite was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller N(2) adsorption-desorption analysis, and UV-Vis diffusion reflectance spectroscopy. The ZnO/GO nanocomposite consisting of flower-like ZnO nanoparticles anchored on graphene-oxide sheets has a high surface area and hierarchical porosity, which is benefit to the adsorption and mass transfer of dye and oxygen species. For the photodegradation of organic dyes under visible light, ZnO/GO nanocomposite exhibited remarkably enhanced photocatalytic efficiency than graphene-oxide sheets and flower-like ZnO particles. Moreover, the photocatalytic efficiency of ZnO/GO nanocomposite could be further improved by annealing the product in N(2) atmosphere. The outstanding photocatalytic performance was ascribed to the efficient photosensitized electron injection and repressed charge carriers recombination in the composite with GO as electron collector and transporter, thus leading to continuous generation of reactive oxygen species for the degradation of methylene blue.  相似文献   

19.
This paper introduces a kind of ZnO ultrafine particles modified with silica and trimethyl siloxane (TMS). Thus zinc carbonate hydroxide (ZCH) as the precursor of ZnO was synthesized using chemical precipitation method, and the precursor was modified in situ with silica and TMS. The modified ZnO ultrafine particles were obtained after calcinating the modified precursors. The surface properties of the modified ZnO ultrafine particles were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectra (XPS), scanning electron microscope (SEM), and transmission electron microscopy (TEM). The effects of the modifiers on the photocatalytic activity and UV shielding ability of ZnO ultrafine particles were also investigated and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号