首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
 用自燃烧法制备了钙钛矿型La0.8Sr0.2FeO3催化剂.用H2-TPR考察了催化剂表面的氧消耗过程,用程序升温表面反应(TPSR)研究了甲烷与催化剂表面氧物种的反应,用在线质谱脉冲反应和甲烷/氧切换反应研究了催化剂的晶格氧选择氧化甲烷制合成气.结果表明,催化剂上存在两种氧物种,无气相氧存在时,强氧化性氧物种首先将甲烷氧化为CO2和H2O;而后提供的氧化性较弱的晶格氧具有良好的甲烷部分氧化选择性,可将甲烷氧化为合成气CO和H2(选择性可达95%以上).在900℃下的CH4/O2切换反应结果表明,甲烷能与La0.8Sr0.2FeO3中的晶格氧反应选择性地生成CO和H2,失去晶格氧的La0.8-Sr0.2FeO3能与气相氧反应恢复其晶格氧.在合适的反应条件下,用La0.8Sr0.2FeO3催化剂的晶格氧代替分子氧按Redox模式实现甲烷选择氧化制合成气是可能的.  相似文献   

2.
制备并表征了二甲醚(DME)固体氧化物燃料电池(SOFCs)系列Ni-Fe-La0.8Sr0.2Ga0.8Mg0.115Co0.085O3(LSGMC8.5) 复合阳极, 电极中Ni与Fe的摩尔比分别为9:1、8:2、7:3、5:5, 电极中Ni-Fe的总质量分数为75%. 利用多种技术考察了电极的物相组成, 电极以及电极/电解质界面的微观结构, 电极/电解质界面上进行的DME电化学氧化反应. 结果表明, 复合阳极中Fe含量的增加促进了电极的烧结, 同时改变了电极/电解质界面的微观结构. 电极催化DME电化学氧化的活性依赖于Ni、Fe的比例, Ni、Fe的摩尔比为8:2的电极具有最高的电化学活性. Ni-Fe-LSGMC8.5电极具有较高的催化DME氧化反应的活性与稳定性, 没有观察到电极中存在明显的积碳现象.  相似文献   

3.
利用钐掺杂的氧化铈夹层提高燃料电池阳极的活性   总被引:3,自引:0,他引:3  
考察了Ni-钐掺杂的氧化铈(Ni-SDC)复合阳极与La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)电解质中间加入的SDC 中间层对阳极及整个电池性能的影响.结果表明,SDC中间层的加入显著减小了阳极极化过电位,但同时引入了欧姆降,降低了电池的功率输出密度.氢在Ni-SDC电极的氧化主要由两个过程控制,分别对应于交流阻抗谱的两个阻抗半圆,高频环随着SDC中间层的加入显著减小,可能对应于H2在Ni-SDC/SDC/H2三相界的电化学氧化或氧从LSGM向SDC的传输,低频环与SDC中间层无关,可能对应于氢在电极表面的解离吸附及吸附物种的扩散过程.使用Ni-SDC/SDC夹层阳极可以明显地提高电池的稳定性.  相似文献   

4.
用自燃烧法制备了钙钛矿型La0.8Sr0.2FeO3催化剂。用H2-TPR考察了催化剂表面的氧消耗过程,用程序升温表面反应(TPSR)研究了甲烷与催化剂表面氧物种的反应,用在线质谱脉冲反应和甲烷/氧切换反应研究了催化剂的晶格氧选择氧化甲烷制合成气。结果表明,催化剂上存在两种氧物种,无气相氧存在时,强氧化性氧物种首先将甲烷氧化为CO2和H2O;而后提供的氧化性较弱的晶格氧具有良好的甲烷部分氧化选择性,可将甲烷氧化为合成气CO和H2(选择性可达95%以上)。在900℃一的CH4/O2切换反应结果表明,甲烷能与La0.8Sr0.2FeO3中的晶格氧反应选择性地生成CO和H2,失去晶格氧的La0.8Sr0.2FeO3能与气相氧反应恢复其晶格氧。在合适的反应条件下,用La0.8Sr0.2FeO3催化剂的晶格氧化替分子氧按Redox模式实现甲烷选择氧化制合成气是可能的。  相似文献   

5.
采用溶胶凝胶法制备了La0.6Sr0.4NixCo1-xO3钙钛矿催化剂,并测试了该催化剂在焦炉煤气CO2重整反应中的性能.通过X射线衍射、N2吸附脱附、程序升温还原、扫描电镜、透射电镜和热重-微分扫描量热等方法对催化剂进行了表征.结果表明,溶胶凝胶法合成的La0.6Sr0.4NixCo1-xO3催化剂形成了钙钛矿结构的固溶体.着重考察了钙钛矿催化剂焙烧温度和A位Ni的掺杂含量对其催化性能和反应后积碳的影响.结果表明: La0.6Sr0.4NixCo1-xO3钙钛矿催化剂在反应中生成了活性金属Ni, Co颗粒和La2O2CO3,这些组分对催化剂的活性和稳定性起关键性的作用,并且能够抑制积碳的形成;焦炉煤气中的富氢气体具有抑制甲烷裂解反应发生的作用,从而减少催化剂的积碳.  相似文献   

6.
采用溶胶凝胶法制备了La0.6Sr0.4NixCo1-xO3钙钛矿催化剂,并测试了该催化剂在焦炉煤气CO2重整反应中的性能.通过X射线衍射、N2吸附脱附、程序升温还原、扫描电镜、透射电镜和热重-微分扫描量热等方法对催化剂进行了表征.结果表明,溶胶凝胶法合成的La0.6Sr0.4NixCo1-xO3催化剂形成了钙钛矿结构的固溶体.着重考察了钙钛矿催化剂焙烧温度和A位Ni的掺杂含量对其催化性能和反应后积碳的影响.结果表明:La0.6Sr0.4NixCo1-xO3钙钛矿催化剂在反应中生成了活性金属Ni,Co颗粒和La2O2CO3,这些组分对催化剂的活性和稳定性起关键性的作用,并且能够抑制积碳的形成;焦炉煤气中的富氢气体具有抑制甲烷裂解反应发生的作用,从而减少催化剂的积碳.  相似文献   

7.
合成了Ag/La0 6 Sr0 4 MnO3和Ag/La0 6 Sr0 4 MnO3/γ -Al2 O3两系列催化剂 ;发现钙钛矿型La0 6 Sr0 4 MnO3对低浓度CH3OH或CO的完全氧化显示出相当高的催化活性 ,适量Ag对钙钛矿型La0 6 Sr0 4 MnO3基质的修饰使其对CH3OH或CO完全氧化催化活性获明显提高 ;在 6%Ag/2 0 %La0 6 Sr0 4 MnO3/γ -Al2 O3催化剂上 ,CH3OH完全氧化的T95温度可低至 4 1 3K ,反应尾气中CH3OH氧化中间产物HCHO和CO的含量在检测极限以下 ;而在相同反应条件下在 1 %Pd/γ -Al2 O3和 1 %Pt/γ -Al2 O3催化剂上 ,CH3OH完全氧化的T95温度分别为 5 1 2和 4 68K ,相应反应尾气中HCHO含量分别为 2 0 0× 1 0 -6 和 63 0× 1 0 -6 ;对比考察了这些催化剂的耐热性能和操作稳定性 ,并结合XRD、XPS和H2 -TPR的表征结果 ,讨论了Ag的促进使用本质  相似文献   

8.
用浸渍法制备并采用交流阻抗、极化等技术考察了不同组成的Ni-Sm3+掺杂的CeO2(SDC) 复合镍阳极的电化学性能及相应电池的功率输出性能.结果表明,SDC掺入镍阳极后,阳极极化过电位及电池的欧姆电阻显著减小.其中阳极过电位的减小与SDC掺入镍电极引起的三相界扩展有关,但SDC的掺入同时引起了电极反应活化能的增加,造成低温下Ni-SDC的极化过电位大于纯Ni电极.高温下,Ni-SDC阳极的阻抗谱由两个半圆组成,其中高频半圆随着SDC掺入量的增加而减小,而低频环与SDC的掺入量基本无关.低温下只观察到一个高频环.高频环可能对应三相界反应,而低频环可能对应氢的解离吸附及扩散.75%(w)Ni-25%(w)SDC/La0.9Sr0.1Ga0.8Mg0.2O3(LSGM)/Sm0.5Sr0.5CoO3(SSC)在所研究的电池中具有最大功率输出密度,其值在1073、973、873 K下分别达到1.1、0.43、0.14 W•cm-2.  相似文献   

9.
 锡锆固溶体催化剂Sn0.55Zr0.45O2具有较好的NO选择性还原性能.本文在此基础上对其进行金属氧化物掺杂,发现用浸渍法掺入碱性金属元素Y,La,Ba和Zn以及用研磨法加入α-Mn2O3可以提高Sn0.55Zr0.45O2的NO选择性还原性能,用浸渍法掺入过渡金属元素Ce,Ag,Cu,Mn及Ni降低了母体催化剂的活性,而浸渍硫酸镓由于在表面引入B酸位使催化剂严重积碳而大大降低了催化剂的NO选择性还原性能.文中给出了活性改善体系的最佳掺杂量,并测定了其抗水性能.在反应气中不含水的条件下,添加2%Ba的样品活性最高,而掺杂1%Zn样品具有最好的抗水性能.对丙烯氧化反应和NO氧化反应的研究表明,抑制还原剂 丙烯的完全燃烧或促进NO氧化为NO2可能有利于NO选择性还原反应的进行.  相似文献   

10.
 采用水热合成法、溶胶凝胶法和共沉淀-负载法制备了相同NiO含量的Ni/ZrO2-CeO2-Al2O3催化剂,考察了它们在CH4-CO2重整反应中的催化性能及稳定性,测定了积碳量.用CO2程序升温脱附方法测试了它们的CO2吸附性能,用H2程序升温脱附方法测试了表面Ni的分散度.结果表明,随温度升高,CH4和CO2转化率降低的顺序是:溶胶凝胶法≈共沉淀-负载法>水热合成法,并且反应产物中n(CO)/n(H2)比随温度升高而降低.水热法和共沉淀-负载法制备的催化剂稳定性好,且前者的活性比后者高;溶胶凝胶法制得的催化剂活性较高,但易失活.积碳量大小顺序是:水热法>溶胶凝胶法>共沉淀-负载法.与其他方法制备的催化剂相比,水热法制备的催化剂对CO2的吸附量更大,\r\n而且积碳主要存在于载体上,从而保证了催化剂的稳定性.  相似文献   

11.
高性能镓酸镧基电解质燃料电池   总被引:8,自引:0,他引:8  
制备并用多种电化学方法研究了LaGaO3基高性能中温固体氧化物燃料电池的电极和电解质材料,组装出了高性能单电池.实验发现, Co掺杂的La0.8Sr0.2Ga0.8Mg0.2O3电解质中, Co含量的增加显著提高了电解质的氧离子电导率,电解质的氧迁移数略有减小,是非常好的中、低温燃料电池电解质.钴掺杂的电解质不仅显著减小了电池的欧姆电阻,而且减小了电池的阴、阳极极化过电位.以La0.8Sr0.2Ga0.8Mg0.11Co0.09O3为电解质时电池在1073、973、873 K下的最大输出功率密度分别达到1.77、0.92、0.41 W•cm-2,是非常有前景的电池体系.  相似文献   

12.
用浸渍法制备了掺杂不同质量分数的La0.8Sr0.2Ga0.8Mg0.15Co0.05O3-δ (LSGMC5)粉末的Ni8-Fe2-LSGMC5复合阳极, 并采用交流阻抗和直流极化技术考察了以氢气和二甲醚为燃气时该复合阳极的电化学性能及相应电池的功率输出特性. 结果表明, 在电极中掺入LSGMC5 粉末, 能显著地改善电极的形貌和电极/电解质界面结构, 减小欧姆电阻和极化电阻. 电极中LSGMC5 粉末含量对于氢气及二甲醚电化学氧化性能的影响显著不同. 以二甲醚为燃气时, 电极极化电阻随LSGMC5 粉末含量的增加而减小, 其中LSGMC5 掺杂量为30%的复合阳极具有最高的电化学性能, 相应电池在1073、1023、973 K 时的输出功率分别为1.00、0.61、0.40 W·cm-2; 以氢气为燃气时, LSGMC5 掺杂量为20%的复合阳极具有最好的电化学性能, 随着LSGMC5 掺杂量的进一步增加, 电极极化电阻显著增大.  相似文献   

13.
采用固相合成法制备了La0.8Sr0.2Ga0.8Mg0.2O3(LSGM8282)和La0.8Sr0.2Ga0.8Mg0.15Co0.05O3 (LSGMC5), 利用四电极交流阻抗法和Hebb-Wagner 极化法对比研究了两种材料的总电导率和电子电导率. 实验结果表明, LSGM8282 的总电导率与氧分压无明显依赖关系, 而LSGMC5 的总电导率在高氧分压区随氧分压降低而增加,在中等氧分压区域基本保持不变. 在973-1173 K的温度范围内, LSGM8282的自由电子电导率以及电子空穴电导率的氧分压级数分别为-1/4和1/4.在1073-1173 K的温度范围内, LSGMC5的自由电子电导率以及电子空穴电导率的氧分压级数分别为-1/4和约为1/8, 表明LSGMC5的空穴产生机制可能与LSGM8282不同. LSGM8282 的氧离子电导率与氧分压无关, 而LSGMC5 的氧离子电导率在高氧分压区随氧分压的减小而增加.  相似文献   

14.
IntroductionIn intermediate-temperature solid oxide fuel cells(SOFCs),doped ceria with a fluorite structure anddoped lanthanum gallate(LSGM)with a perovskitestructure are commonly used as electrolyte materials.However,the former easily exhibits an electro…  相似文献   

15.
中温复合固体电解质SDC-LSGM的制备和性能   总被引:1,自引:1,他引:1  
采用甘氨酸-硝酸盐法分别制备了Ce0.85Sm0.15O2-δ(SDC)与La0.9Sr0.1Ga0.8Mg0.2O3-δ(LSGM)两种电解质材料, 并用固相混合法将两种材料按不同质量比(SDC与LSGM的质量比分别为9∶1, 8∶2, 5∶5)混合制备复合电解质材料. 采用交流阻抗技术对样品的电学性能进行研究. 实验结果表明, SDC与LSGM的质量比为9∶1(SL91)时, 样品具有较高的电导率, 在350—800 ℃温度范围内其电导率均比SDC的高. 以复合电解质为支撑体, 以Sm0.5Sr0.5CoO3 为阴极、NiO/SDC 为阳极制成单电池, 测试结果显示, 在800 ℃时以SL91为电解质的单电池的最大输出功率密度为0.25 W/cm2, 最大电流密度为1.06 A/cm2. 在电池的工作温度区间(600—800 ℃)内以复合材料为电解质的单电池的开路电压比以SDC为电解质的高.  相似文献   

16.
高性能Sm0.5Sr0.5CoO3阴极的制备与表征   总被引:8,自引:0,他引:8  
用固相合成法合成了Sm0.5Sr0.5CoO3 (SSC)中温固体氧化物燃料电池阴极材料.以La0.9Sr0.1Ga0.8Mg0.2O3为电解质,利用多种技术考察了不同温度(1173~1373 K)焙烧的SSC阴极,以及1173 K 焙烧、掺杂La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)或La0.8Sr0.2Ga0.8Mg0.09Co0.11O3 (LSGMC11)高氧离子电导材料的复合SSC阴极.SEM的结果显示,随着电极焙烧温度的增加,电极的颗粒度增大,孔隙度减小;LSGMC5、LSGMC11的掺杂对电极微观结构影响不大.交流阻抗和极化实验的结果表明,SSC电极的活性随电极焙烧温度的增加而减小,电极的最佳焙烧温度在1173 K左右;掺杂了LSGMC5或LSGMC11的复合SSC电极的活性以及稳定性显著高于SSC电极.  相似文献   

17.
用湿化学法制备了Sm0.5Sr0.5CoO3(SSC)-La0.8Sr0.2Ga0.8Mg0.15Co0.05O3(LSGMC5)中温固体氧化物燃料电池复合阴极材料,其中SSC用甘氨酸-硝酸盐法合成,LSGMC5用柠檬酸盐法合成。XRD结果表明,甘氨酸-硝酸盐法制备的SSC在焙烧温度大于1223K即表现为单一的钙钛矿结构。随焙烧温度的升高,SSC粉末颗粒增大,导致含有高温烧结SSC的电极与电解质界面结合变差。采用多种技术考察了利用不同温度(1173-1373K)预烧的SSC粉末制备的SSC-LSGMC5阴极上进行的氧还原反应。结果表明,SSC-LSGMC5复合电极的性能显著依赖于电极中SSC粉末的预烧温度,当SSC粉末焙烧温度在1223K附近时,具有最小的欧姆电阻以及氧还原反应极化电阻,1A· cm-2电流密度下的极化过电位为0.077 V。  相似文献   

18.
以研究与Sr,Mg掺杂LaGaO3(LSGM)电解质匹配的阳极材料为出发点,系统研究了Ce1-xTmxO2-δ(Tm=Cu,Mn,Fe)固溶体的晶体结构、热化学稳定性、电化学性能和单电池发电实验。柠檬酸法合成的Ce1-xTmxO2-δ化合物在x<0.2时均为单相材料,与LSGM电解质有良好的热化学相容性。采用交流阻抗法研究了阳极材料的电化学性能,金属元素掺杂可以显著地改善CeO2电化学性能,Fe元素掺杂阳极材料极化电阻最小,随着元素掺杂量的增加以及氢气增湿,极化电阻减小。采用电解质支撑结构单电池进行发电实验,在800℃时,以Ce0.8Fe0.2O2-δ作为阳极的单电池最高功率密度可达98 mW.cm-2,表明该材料作为IT-SOFC的阳极材料具有一定的可行性,有望成为适合LSGM电解质的阳极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号