首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphilic and hydrophilic oligomers were synthesized and coated on fused silica capillaries using a sol-gel technique. Sol-gel-coated capillaries were evaluated for the solid-phase microextraction and preconcentration of a wide variety of non-polar and polar analytes. Both types of coatings were stable under high temperature (up to 280 degrees C). The extraction efficiency of the sol-gel coatings was evaluated for the extraction of both non-polar and polar analytes, including organochlorine pesticides, triazine herbicides, estrogens and alkylphenols (APs) and bisphenol-A (BPA). Compared with commercially available solid-phase microextraction (SPME) adsorbents such as poly(dimethylsiloxane)divenylbenzene and polyacrylate, the new materials showed comparable selectivity and sensitivity towards both non-polar and polar analytes. The new coatings gave good linearity and detection limits. For example with triazines, a detection limit of <0.005 microl l(-1), precision from 5.0 to 11.0% (n = 6) and linearity of the calibration plots (0.5 to 50 microl l(-1)) were obtained. The sol-gel coated SPME capillaries were used for the determination of triazine herbicides in reservoir water samples collected in Singapore.  相似文献   

2.
In this paper the most recent developments in the microextraction of polar analytes from aqueous environmental samples are critically reviewed. The particularities of different microextraction approaches, mainly solid-phase microextraction (SPME), stir-bar-sorptive extraction (SBSE), and liquid-phase microextraction (LPME), and their suitability for use in combination with chromatographic or electrically driven separation techniques for determination of polar species are discussed. The compatibility of microextraction techniques, especially SPME, with different derivatisation strategies enabling GC determination of polar analytes and improving their extractability is revised. In addition to the use of derivatisation reactions, the possibility of enhancing the yield of solid-phase microextraction methods for polar analytes by using new coatings and/or larger amounts of sorbent is also considered. Finally, attention is also focussed on describing the versatility of LPME in its different possible formats and its ability to improve selectivity in the extraction of polar analytes with acid-base properties by using separation membranes and buffer solutions, instead of organic solvents, as the acceptor solution.  相似文献   

3.
To enable high sample throughput, an automated solid-phase microextraction (SPME) method coupled with GC-MS for the trace analysis of technical nonylphenol, bisphenol A and 17alpha-ethinylestradiol was developed. The extraction performance of different SPME fibre coatings was examined, with polyacrylate proving most suitable. Although study of the extraction time showed that the analytes have not reached equilibrium after 3 h, as a compromise an extraction time of 1 h was applied in all the experiments with detection limits between 0.04 and 1 microg l(-1) for wastewater effluent. The mean reproducibility of the technique is 8% RSD. Carry-over effects are negligible. The linearity of calibration curves ranges over three orders of magnitude. The method was tested for determining the analytes in influents and effluents of constructed wetland plants and in model wastewater used in laboratory experiments.  相似文献   

4.
During the last decade, solid-phase microextraction (SPME) has gained widespread acceptance for analyte matrix separation and preconcentration. Relatively few data are currently available dealing with in-house production of fibres with tailor-made properties to be used for SPME, though recently the number of publications evaluating new coatings has been considerably growing. This review, centred on publications that appeared during the last five years, is resuming different approaches which can be used for fibre production and further summarises alternative techniques closely related to SPME, such as in-tube extraction or single-drop microextraction (SDME). The aim is to give the reader a concise overview of recent developments in new coating procedures and materials, including the respective applications.  相似文献   

5.
Despite the continuing development of SPME (solid-phase microextraction) fibre coatings, their selection presents some difficulties for analysts in choosing the appropriate fibre for a certain application. There are two distinct types of SPME coatings available commercially. The most widely used are poly(dimethylsiloxane) (PDMS) and poly(acrylate) (PA). Supelco has developed new mixed phases consisting of porous polymer particles, either poly(divinylbenzene) (DVB) or Carboxen suspended in a matrix of PDMS or Carbowax for extracting analytes via adsorption. In addition to the nature of the extracting phase, the thickness of the polymeric film must be taken into account and, surprisingly, the construction of the fibres when apparently they bear the same coating, as it is the case of the three PDMS-DVB fibres available. Other fibre structure properties not well explored were identified and must be taken into consideration. To elucidate their extraction efficiency, three PDMS-DVB fibres, namely 60 microm for HPLC use, 65 microm for GC use and 65 microm StableFlex for GC use, were compared with regard to the extraction of 36 compounds included in four pesticide groups. The first was particularly suited for the extraction of organophosphorus pesticides and triazines whereas the StableFlex exhibited advantages in the analysis of organochlorine pesticides and pyrethroids. An explanation for the extraction differences is suggested based on the different structure of the fibres. Detection limits in the range of 1-10 ng/l for organochlorine pesticides, 1-30 ng/l for organophosphorus pesticides, 8-50 ng/l for triazines and 10-20 ng/l for pyrethroids were attained in a method using the 60 microm PDMS-DVB fibre. The fibre maintains its performance at well above 100 extractions with between-day precision below 10%.  相似文献   

6.
The emission of low molecular weight compounds from recycled high-impact polystyrene (HIPS) has been investigated using headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS). Four released target analytes (styrene, benzaldehyde, acetophenone, and 2-phenylpropanal) were selected for the optimisation of the HS-SPME sampling procedure, by analysing operating parameters such as type of SPME fibre (polarity and operating mechanism), particle size, extraction temperature and time. 26 different compounds were identified to be released at different temperatures from recycled HIPS, including residues of polymerisation, oxidated derivates of styrene, and additives. The type of SPME fibre employed in the sampling procedure affected the detection of emitted components. An adsorptive fibre such as carbowax/polydimethylsiloxane (CAR/PDMS fibre) offered good selectivity for both non-polar and polar volatile compounds at lower temperatures; higher temperatures result in interferences from less-volatile released compounds. An absorptive fibre as polydimethylsiloxane (PDMS) fibre is suitable for the detection of less-volatile non-polar molecules at higher temperatures. The nature and relative amount of the emitted compounds increased with higher exposure temperature and smaller polymeric particle size. HS-SPME proves to be a suitable technique for screening the emission of semi-volatile organic compounds (SVOCs) from polymeric materials; reliable quantification of the content of target analytes in recycled HIPS is however difficult due to the complex mass-transfer processes involved, matrix effects, and the difficulties in equilibrating the analytical system.  相似文献   

7.
The application of a manual operated solid-phase microextraction (SPME)-HPLC interface is discussed for the analysis of thermally labile analytes in aqueous matrices. The technique has been applied on-site at a flooded rice field to demonstrate its potential for real time extraction of the herbicide profoxydim. Thus, compounds which would otherwise easily degrade in the aqueous matrices within hours or days could be determined more accurately. The fibers were shipped back to the laboratory with express delivery where the target analyte was desorbed from the fiber and determined by HPLC-UV analysis. The SPME method was characterized by significant ruggedness where conventional techniques such as liquid-liquid extraction and solid-phase extraction require additional shipping and handling costs and time-consuming multiple sample preparation steps. In general, any delay in shipping the aqueous samples to the laboratory has the potential for sample degradation and a loss in accuracy when using non on-site extraction techniques. Fifty microm Carbowax-templated resin coatings were most suitable for coupling SPME to HPLC in order to achieve a high sensitivity for polar analytes. The SPME technique was characterized by a good sensitivity and a precision less than 10% RSD. The SPME-LC-UV method was linear over at least three orders of magnitude while achieving a limit of detection in the lower microg/l range. The on-site SPME method has shown significantly increased accuracy. Profoxydim was determined at concentrations of ca. 180 microg/l 3 h after an application on a flooded bare soil field.  相似文献   

8.
Odorous organic compounds from liquid and gas samples of animal wastes were studied by headspace (HS)-solid-phase microextraction (SPME)-GC-MS. 1-Pirenyldiazomethane (PDAM) was adsorbed/absorbed on the SPME fibre in order to obtain the corresponding ester derivatives during the preconcentration step. The SPME fibre was immersed into a PDAM solution. Then, the SPME fibre was withdrawn and exposed to the HS of the liquid cow slurry. This way derivatisation of VFAs took place in the SPME fibre together with the preconcentration of the rest of the analytes of interest. The analytes were desorbed in the hot injection port (300 degrees C) of a GC-MS for 3 min. Four different fibre types and different immersion periods of the fibre in the PDAM solution were studied in order to obtain the best sensitivity with the selected fibre. Accuracy, precision and the LODs were calculated using spiked liquid and gas samples. The possibility of storing liquid samples after sampling by preconcentration on the fibre was also considered. Storage time and temperature were studied. The optimised method was applied to the determination of the analytes in liquid and gas samples from cow slurries from an intensive production farm.  相似文献   

9.
A depletion solid-phase microextraction (SPME) method based on multiple SPME extraction was applied to estimate fibre coating-water distribution constants (Kfs) of brominated flame retardants. Several polybrominated diphenyl ethers (PBDEs) including compounds present in the commercial mixture "Pentamix", and two polybrominated biphenyls (PBBs) were considered as target analytes. One hundred-micrometer poly(dimethylsiloxane) (PDMS) coating fibre was selected to estimate partition coefficients. SPME kinetics studies at 25 and 100 degrees C were performed. Kfs values obtained at both temperatures for brominated flame retardants were compared with the corresponding octanol-water partition coefficients (Kow) values found in literature. A linear log-log relationship between Kow with Kfs was found. To the best of our knowledge, this is the first study where brominated flame retardants Kfs values are estimated.  相似文献   

10.
A method using on-line solid-phase microextraction (SPME) on a carbowax-templated fiber followed by liquid chromatography (LC) with ultraviolet (UV) detection was developed for the determination of triclosan in environmental water samples. Along with triclosan, other selected phenolic compounds, bisphenol A, and acidic pharmaceuticals were studied. Previous SPME/LC or stir-bar sorptive extraction/LC-UV for polar analytes showed lack of sensitivity. In this study, the calculated octanol–water distribution coefficient (log D) values of the target analytes at different pH values were used to estimate polarity of the analytes. The lack of sensitivity observed in earlier studies is identified as a lack of desorption by strong polar–polar interactions between analyte and solid-phase. Calculated log D values were useful to understand or predict the interaction between analyte and solid phase. Under the optimized conditions, the method detection limit of selected analytes by using on-line SPME-LC-UV method ranged from 5 to 33 ng?L?1, except for very polar 3-chlorophenol and 2,4-dichlorophenol which was obscured in wastewater samples by an interfering substance. This level of detection represented a remarkable improvement over the conventional existing methods. The on-line SPME-LC-UV method, which did not require derivatization of analytes, was applied to the determination of TCS including phenolic compounds and acidic pharmaceuticals in tap water and river water and municipal wastewater samples.
Figure
Schematic diagram of the On-line solid-phase microextraction  相似文献   

11.
固相微萃取-衍生化技术及其在环境和生物分析中的应用   总被引:11,自引:0,他引:11  
栾天罡  张展霞 《分析化学》2003,31(4):496-500
固相微萃取(SPME)是近年发展起来的一种无溶剂、简单快速的样品预处理方法。SPME同衍生化技术结合是拓展SPME方法的一个重要方向。对固相微革取与衍生化方法结合在环境及生物样品中极性分析和金屑有机化合物上的应用及进展进行了评述,又对SPME衍生化反应的方式和条件进行了讨论。  相似文献   

12.
A simple and sensitive method for the analysis of volatile and semi-volatile sulphur compounds in beer at trace levels was developed using headspace solid-phase microextraction (SPME) and gas chromatography with pulsed flame photometric detection. Different SPME fibres were tested and a Carboxen-polydimethylsiloxane coated fibre was found to be the most appropriate. The adsorption and desorption conditions were optimised. The effect of ethanol concentration in the sample on the extraction of analytes was examined. A 60 m non-polar capillary column preceded by a 10 m length of a polar column was found to be capable of separating a wide range of C1-C6 sulphur compounds. The pulsed flame photometric detector enabled increased sensitivity to be obtained over previous methods, such as dynamic headspace followed by conventional flame photometric detection or sulphur chemiluminescent detection, with high sulphur selectivity. Two sulphur compounds, 2-methyl-1-butanethiol and 3-methylthiophene, were identified in beer for the first time.  相似文献   

13.
In order to evaluate recent cocaine exposure or its coingestion with ethanol, a simple and sensitive solid-phase microextraction (SPME) procedure for determination of cocaine and cocaethylene in urine was developed and validated. A polydimethylsiloxane fibre (100 microm) was submersed in the urine sample for 20 min under magnetic stirring after alkalinization with solid buffer (NaHCO(3):K(2)CO(3), 2:1). Gas chromatography-mass spectrometry (GC-MS) was used to identify and quantify the analytes in selected ion monitoring mode (SIM). The limits of quantification were 5.0 ng/mL for both analytes. Good inter- and intra-assay precision was also observed (coefficient of variation <9%).  相似文献   

14.
In-tube solid-phase microextraction (SPME) is an automated version of SPME that can be easily coupled to a conventional HPLC autosampler for on-line sample preparation, separation and quantitation. It has been termed "in-tube" SPME because the extraction phase is coated inside a section of fused-silica tubing rather than coated on the surface of a fused-silica rod as in the conventional syringe-like SPME device. The new in-tube SPME technique has been demonstrated as a very efficient extraction method for the analysis of polar and thermally labile analytes. The in-tube SPME-HPLC method used with the FAMOS autosampler from LC Packings was developed for detecting polar carbamate pesticides in clean water samples. The main parameters relating to the extraction and desorption processes of in-tube SPME (selection of coatings, aspirate/dispense steps, selection of the desorption solvents, and the efficiency of desorption solvent, etc.) were investigated. The method was evaluated according to the reproducibility, linear range and limit of detection. This method is simple, effective, reproducible and sensitive. The relative standard deviation for all the carbamates investigated was between 1.7 and 5.3%. The method showed good linearity between 5 and 10000 microg/l with correlation coefficients between 0.9824 and 0.9995. For the carbamates studied, the limits of detection observed are lower than or similar to that of US Environmental Protection Agency or National Pesticide Survey methods. Detection of carbaryl present in clean water samples at 1 microg/l is possible.  相似文献   

15.
Solid-phase microextraction fibres with different lengths, coatings (polydimethylsiloxane, polyacrylate, Carbowax/divinylbenzene), film thicknesses, and mounting techniques were examined in combination with GC-MS with regard to their enhanced extraction capacities and fibre 'bleeding'. A series of phenols and halogenated aromatics with diverse physicochemical properties were investigated to characterize the effects of the enhanced extraction capacities of solid-phase microextraction fibres. Fibre extension was found to be effective for the microextraction of compounds with high log Kow values, whereas increasing both coating thickness and fibre length is most effective for the microextraction of more polar compounds such as phenols. Almost no bisphenol A was released when custom-made polydimethylsiloxane fibres were used, finally eliminating a drawback of endocrine disrupter analysis by solid-phase microextraction.  相似文献   

16.
Solid-phase microextraction (SPME) is a simple and effective adsorption and desorption technique, which eliminates the need for solvents or complicated apparatus, for concentrating volatile or nonvolatile compounds in liquid samples or headspace. SPME is compatible with analyte separation and detection by gas chromatography and high-performance liquid chromatography, and provides linear results for wide concentrations of analytes. By controlling the polarity and thickness of the coating on the fibre, maintaining consistent sampling time, and adjusting other extraction parameters, an analyst can ensure highly consistent, quantifiable results for low concentration analytes. To date, about 400 articles on SPME have been published in different fields, including environment (water, soil, air), food, natural products, pharmaceuticals, biology, toxicology, forensics and theory. As the scope of SPME grew, new improvements were made with the appearance of new coatings that allowed an increase in the specificity of this extraction technique. The key part of the SPME fibre is of course the fibre coating. At the moment, 27 variations of fibre coating and size are available. Among the newest are a fibre assembly with a dual coating of divinylbenzene and Carboxen suspended in poly(dimethylsiloxane), and a series of 23 gauge fibres intended for specific septumless injection system. The growth of SPME is also reflected in the expanding number of the accessories that make the technology even easier to use Also available is a portable field sampler which is a self-contained unit that stores the SPME fibre after sampling and during the shipment to the laboratory. Several scientific publications show the results obtained in inter-laboratory validation studies in which SPME was applied to determine the presence of different organic compounds at ppt levels, which demonstrates the reliability of this extraction technique for quantitative analysis.  相似文献   

17.
况逸馨  周素馨  胡亚兰  郑娟  欧阳钢锋 《色谱》2022,40(10):882-888
固相微萃取是一种集采样、萃取、富集和进样于一体的样品前处理技术,其萃取效果与涂层材料密切相关。多孔碳材料具有比表面积大、多孔结构可控、活性位点多和化学稳定性好等优点,广泛应用于电池、超级电容器、催化、吸附和分离等领域,也是一种热门的用作固相微萃取探针的涂层材料。衍生多孔碳材料因种类丰富、可设计性强被广泛研究,研究主要集中在对衍生多孔碳材料的结构优化方面。但是衍生多孔碳材料在固相微萃取中的应用还存在如下问题:(1)共价有机框架衍生多孔碳材料的制备已取得较大进展,但将其应用于固相微萃取领域的研究仍较少;(2)有待进一步明确制备出的衍生多孔碳材料用作固相微萃取涂层表现出优异提取能力的机理;(3)有待进一步深入研究将衍生多孔碳材料用作固相微萃取涂层以实现对不同物理化学性质污染物的广谱高灵敏度分析。文章综述了近3年衍生多孔碳材料在固相微萃取中的应用研究,并展望了未来衍生多孔碳材料在固相微萃取中的研究前景。引用文献共56篇,主要来源于Elsevier。  相似文献   

18.
Novel molecularly imprinted polymer (MIP)-coated fibers for solid-phase microextraction (SPME) fibers were prepared by using linezolid as the template molecule. The characteristics and application of these fibers were investigated. The polypyrrole, polythiophene, and poly(3-methylthiophene) coatings were prepared in the electrochemical polymerization way. The molecularly imprinted SPME coatings display a high selectivity toward linezolid. Molecularly imprinted coatings showed a stable and reproducible response without any influence of interferents commonly existing in biological samples. High-performance liquid chromatography with spectroscopic UV and mass spectrometry (MS) detectors were used for the determination of selected antibiotic drugs (linezolid, daptomycin, amoxicillin). The isolation and preconcentration of selected antibiotic drugs from new types of biological samples (acellular and protein-free simulated body fluid) and human plasma samples were performed. The SPME MIP-coated fibers are suitable for the selective extraction of antibiotic drugs in biological samples.  相似文献   

19.
The efficiency of headspace solid-phase microextraction (SPME) was evaluated for the qualitative and semi-quantitative analysis of virgin olive oil volatile compounds. The behaviour of four fibre coatings was compared for sensitivity, repeatability and linearity of response. A divinylbenzene-Carboxen-polydimethylsiloxane fibre coating was found to be the most suitable for the analysis of virgin olive oil volatiles. Sampling and chromatographic conditions were examined and the SPME method, coupled to GC with MS and flame ionization detection, was applied to virgin olive oil samples. More than 100 compounds were isolated and characterised. The presence of some of these compounds in virgin olive oil has not previously been reported. The main volatile compounds present in the oil samples were determined quantitatively.  相似文献   

20.
The headspace solid-phase microextraction (HS-SPME) efficiencies from vegetable oil of the recently available Carboxen-poly(dimethylsiloxane) (PDMS) and divinylbenzene-Carboxen-PDMS fibres were found to be much greater than those of the PDMS fibre for a number of volatile contaminants. Using these Carboxen-based fibres, the commonly used HS-SPME equilibration times for aqueous matrices of 30-45 min at room temperature for a number of halogenated and aromatic analytes with volatilities ranging from 1,1-dichloroethylene to hexachlorobenzene were found to be insufficient for the effective extraction of the less volatile analytes from vegetable oil. HS-SPME at 100 degrees C for 45 min, followed by rapid cooling to 0 degrees C with a 10 min continuing extraction, however, significantly increased the SPME efficiencies for the less volatile analytes. Spiking solutions were prepared in vegetable oil instead of methanol as the latter was found to displace analytes from the Carboxen material. Using either of the Carboxen-based fibres and SPME at 100 degrees C, all the target analytes could be determined at low or sub-microg kg(-1) with repeatability < or =10%, even though an equilibrium SPME of the less volatile analytes was not achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号