首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Optimal conditions of headspace solid-phase microextraction followed by gas chromatography coupled to pulsed flame photometric detection (SPME–GC–PFPD) have been investigated to validate the analysis of 11 organotin compounds in plant matrices including methyl-, butyl-, and phenyltin compounds. The extraction of organotin compounds from vegetal matrices has been carried out using optimized conditions of HCl-based extraction. The use of headspace SPME to preconcentrate the analytes allowed most of the detection limits to be obtained sub-0.5?ng(Sn)?g?1. The precision evaluated using RSD with six replicates ranges between 5 and 10% (except for triphenyltin: 17%). The accuracy of the method was validated on spiked or polluted vegetal samples taken from Bizerte Lagoon (Tunisia) and by comparison with classical liquid–liquid extraction (LLE). These results highlight the suitability of the selected method for organotin control in complex environmental matrices such as aquatic plants.  相似文献   

2.
Headspace SPME was used to analyse malodorous sulfur compounds in liquid industrial effluents. A pulsed flame photometric detector (PFPD) was selected for a specific and sensitive analysis. Two fibres, PDMS/Dvb and PDMS/Carboxen, which are particularly convenient for extracting small and volatile molecules were tested. To compare these fibres, both sensitivity and artefact formation were considered. The PDMS/Carboxen fibre showed the lower limits of detection and moreover the least artefact formation yields. It was therefore selected and headspace SPME extraction conditions were optimised. Limits of detection of the target compounds evaluated were 12–31 ng L–1 and repeatability was around 7%. Due to the adsorption mechanism involved, extraction is strongly influenced by the sample matrix and the low affinity compounds can suffer displacement effects. To investigate the occurrence of this phenomenon, two sampling times corresponding to non-equilibrium (5 min) and equilibrium conditions (60 min) were investigated. An external calibration was carried out by using standard solutions for both sampling times. The developed procedure was then compared to the standard addition method on a real industrial effluent. The results obtained from the two methods and for the two extraction times were in good agreement, demonstrating that even a long sampling time can be used. Therefore, the simple and timesaving external calibration was defined as relevant for an accurate quantification of sulfur compounds by headspace SPME.  相似文献   

3.
Headspace solid-phase microextraction (SPME) followed by gas chromatography (GC) coupled to pulsed flame photometric detection have been investigated for the simultaneous speciation analysis of 14 organotin compounds, including methyl-, butyl-, phenyl-, and octyltins compounds. The analytical process (sorption on SPME fibre and thermal desorption in GC injection port) has been optimised using experimental designs. Six operating factors were considered in order to evaluate their influence on the performances of a SPME-based procedure. The evaluation of accuracy, precision and limits of detection (LODs) according to ISO standards and IUPAC recommendations has allowed the method to be validated. The LODs obtained for the 14 studied organotins compounds are widely sub-ng(Sn) l(-1). The precision evaluated using relative standard deviation ranges between 9 and 25% from five determinations of the analytes at 0.25-125 ng(Sn) l(-1) concentrations. The accuracy was studied throughout the analysis of spiked environmental samples. These first results show that headspace SPME appears really as attractive for organotins determination in the environment and the monitoring of their biogeochemical cycle.  相似文献   

4.
气相色谱-质谱法分析啤酒中酒花香气成分   总被引:1,自引:0,他引:1  
利用顶空固相微萃取-气相色谱质谱技术(HS-SPME/GC-MS)建立了定量分析啤酒中19种源自酒花的微量香气成分的方法。研究了不同萃取头、萃取时间、萃取温度对萃取效果的影响,最终确定HS-SPME最佳萃取条件为采用PDMS萃取头对啤酒样品在50℃下萃取60 min。在最佳萃取条件下,采用啤酒为基体以减少基体干扰,建立标准曲线,随后在SIM模式下以萜品烯-4-醇为内标定量测定了啤酒中酒花香气物质的含量。19种物质的回收率在81.2%~116.8%之间,相对标准偏差(RSD)低于9.8%,在5个加标浓度下,R2大于0.99。相比于传统方法,本方法所需样品量少、灵敏度高、操作过程简便,能准确的检测出啤酒中酒花香气物质的含量。  相似文献   

5.
Summary A mathematical derivation of efficiency and resolution equations for use in conjunction with flame photometric detection of sulphur compounds is presented. These equations are similar to those for linear detection apart from the incorporation of the exponential response factor, n, in the denominator of the respective expressions for non-linear detection. The latter equations reduce to those usually recognised for linear detection if the value n=1 is substituted. Equating the column efficiency equations for linear and non-linear detection permits direct determination of the value of n.  相似文献   

6.
A simple and sensitive method for the analysis of beer volatile compounds was optimised using headspace solid-phase microextraction (SPME) and gas chromatography with mass detection. Headspace SPME using a 75 microm Carboxen-polydimethylsiloxane (CAR-PDMS) fiber provided effective sample enrichment and enabled extraction of a wide variety of compounds. The reproducibility depended on the compounds, with a mean value of 1.4% for alcohols, 3.3% for ethers, 6.7% for aldehydes, 3.4% for acids, 1.7% for aromatic compounds, 2.4% for esters, 7.4% for hydrocarbons, 1.8% for alicyclic compounds, and 3.4% for heterocyclic compounds. The optimised methodology can be used to compare volatile profile from different types of beers and eventually to study the evolution of a particular beer during aging.  相似文献   

7.
Headspace solid-phase microextraction was applied to gas chromatography coupled to flame photometric detection to develop a method for analysing volatile sulphides and disulphides in wine. The Carboxen-polydimethylsiloxane-coated silica fiber was tested and different parameters such as presampling time, ionic strength, stirring, headspace volume, ethanol concentration, time and temperature of extraction were optimized to make extraction as efficient as possible. The optimized conditions enabled limits of detection to be obtained at the ng/l levels. The fiber tested has a strong affinity for the sulphur compounds studied and enables these analytes to be quantitatively determined in wines. The Carboxen-polydimethylsiloxane-coated fiber is more efficient at extracting than fibers such as those which are polydimethylsiloxane-coated and polyacrylate-coated, but its repeatability is worse. The overall process was successfully applied to identify and quantify sulphur compounds in white, red, rose and vintage wines.  相似文献   

8.
The efficiency of headspace solid-phase microextraction (SPME) was evaluated for the qualitative and semi-quantitative analysis of virgin olive oil volatile compounds. The behaviour of four fibre coatings was compared for sensitivity, repeatability and linearity of response. A divinylbenzene-Carboxen-polydimethylsiloxane fibre coating was found to be the most suitable for the analysis of virgin olive oil volatiles. Sampling and chromatographic conditions were examined and the SPME method, coupled to GC with MS and flame ionization detection, was applied to virgin olive oil samples. More than 100 compounds were isolated and characterised. The presence of some of these compounds in virgin olive oil has not previously been reported. The main volatile compounds present in the oil samples were determined quantitatively.  相似文献   

9.
The preparation and applicability of solid phase microextraction (SPME) fibers coated with a sol-gel organically modified silica based on 3-aminopropyltrimethoxysilane and polydimethylsiloxane (APTMS/PDMS) are described here. Micrographs of the coated fibers revealed a rugous surface; the thickness of the coating was estimated to be less than 30 microm. The APTMS/PDMS fibers were tested with synthetic samples and compared to commercial fibers for headspace SPME analysis of beer. Extraction and desorption using the APTMS/PDMS fibers were faster, which is typical for sol-gel SPME fibers. For polar and semi-polar compounds on beer headspace, the extraction efficiencies of the APTMS/PDMS fiber were superior to those of conventional fibers. The APTMS/PDMS fiber was found to be capable of extracting a broad range of analytes, including highly polar acidic species such as organic acids.  相似文献   

10.
Summary The profiles of sulfur containing compounds present in both Arabica and Robusta coffees were determined by concentrating the volatiles from dry ground roasted coffee headspace, pressed coffee oil or brewed coffee headspace onto an adsorbent (Tenax) which was then thermally desorbed into a capillary column. The volatiles were then chromatographed and detected with a flame photometric detector. Significant quantitative differences between the profiles of Arabica coffee and Robusta coffee are found for all three sample types with a few components being up to 20-times more concentrated in the Robusta coffee than in the Arabica coffee. These differences may be utilized to detect as little as 1 % Robusta coffee present in Arabica coffee.  相似文献   

11.
A quantification method for malodorous sulphur compounds in gaseous industrial effluents using solid-phase microextraction sampling followed by gas chromatography-pulsed flame photometric detection has been developed. A comparative study showed that polydimethylsiloxane-Carboxen fibre led to sufficient sensitivity to achieve the microg m(-3) human perception levels of the five analytes studied (hydrogen sulphide, methanethiol, ethanethiol, dimethyl sulphide, dimethyl disulphide). However, this coating is known to suffer from competitive adsorption, which may lead to inaccurate quantification. Therefore, external calibration can only be used under a limited range of concentrations, which were determined from Fick's diffusion law. This approach was tested on a real gaseous sample and compared with the standard addition method. Good correlations were found for ethanethiol, dimethyl sulphide and dimethyl disulphide. However, for more volatile sulphur compounds (i.e., hydrogen sulphide and methanethiol), the easy-to-use external calibration could not be applied and standard additions had to be performed for accurate quantification.  相似文献   

12.
Three approaches based on headspace single-drop microextraction (HS-SDME), direct single-drop microextraction (Direct-SDME), and headspace solid-phase microextraction (HS-SPME), have been compared for analyzing volatile sulphur compounds (VSCs) in beer and beverage. Procedures and performance of the three methods have been contrasted through the determination of extraction efficiencies, precision, linearity and limits of detection. The overall process of HS-SDME and HS-SPME was applied to GC-FPD determination of five VSCs in beer and beverage.  相似文献   

13.
裂解色谱法研究渣油中硫化物的结构及组成特征   总被引:2,自引:0,他引:2  
鄢小琳  史权  徐春明  赵锁奇  柯明 《色谱》2004,22(2):162-165
采用裂解气相色谱(PY-GC)方法研究重油中的大分子硫化物。实验考察了裂解时间和裂解温度对裂解反应的影响,在此基础上确定了裂解色谱条件,并分析了渣油裂解产物的组成。通过对大港、俄罗斯、前郭、孤岛及俄罗斯-大庆混合减压渣油等5种渣油的裂解实验,发现不同来源的渣油裂解产物中硫化物的组成和含量存在较大差异。实验中所得到的裂解产物中硫化物的组成为渣油中硫化物的组成提供了重要信息。  相似文献   

14.
A method for analysis of heavy sulphur compounds in wines, based on gas chromatography (GC) with flame photometric detection, is reported. Wine samples preparation includes a dichloromethane liquid-liquid extraction followed by concentration under a nitrogen atmosphere. The extracted fraction was also analysed by GC-mass spectrometry. The method enables high recovery of sulphur compounds in wine and satisfies the requirements of repeatability and sensitivity. Applications of the method to red, white and Port wines are reported.  相似文献   

15.
Summary Ethanol has been found extractable from human whole blood and urine samples by headspace solid-phase micro extraction (SPME) with a Carbowax/divinylbenzene-coated fiber. After heating a vial containing the body fluid sample with ethanol, and isobutanol as internal standard (IS) at 70°C in the presence of (NH4)2SO4, a Carbowax/divinylbenzene-coated SPME fiber was exposed in the headspace of the vial to allow adsorption of the compounds. The fiber needle was then injected into a middle-bore capillary gas chromatography (GC) port. The headspace SPME-GC gave intense peaks for both compounds; a small amount of background noises appeared, but did not interfere with the detection of the compounds. Recoveries of ethanol and IS were 0.049 and 0.026% for whole blood, respectively, and 0.054 and 0.085% for urine, respectively. The calibration curves for ethanol showed excellent linearity in the range of 80–5000 mg L–1 for whole blood and 40–5000 mg L–1 for urine; the detection limits for both samples were 20 and 10 mg L–1, respectively. The data on actual determination of ethanol after the drinking of beer are also presented for two subjects.  相似文献   

16.
A method based on solid-phase microextraction (SPME) and gas chromatography with flame ionization detection (GC-FID) has been optimized for the determination of benzene, toluene, ethylbenzene and xylenes (BTEX) in water released from a waste treatment plant. The extraction step was optimized using fractional factorial and central composite designs including the following experimental factors: saline concentration; extraction time; desorption time; agitation velocity; headspace volume. A multiple function was used to describe the experimental conditions for simultaneous extraction of the compounds. The procedure, based on direct SPME at 50 degrees C, using a polydimethylsiloxane fiber, showed good linearity (r>0.997 over a concentration range 2-200 microg L(-1)) and repeatability (relative standard deviation (RSD)<4.23%) for all compounds, with limits of detection ranging from 0.05 to 0.28 microg L(-1), and limits of quantification ranging from 0.14 to 0.84 microg L(-1). Concentrations of the target compounds in these samples were between 145.8 and 1891 microg L(-1).  相似文献   

17.
Summary A series of studies is described on the evaluation and comparison of some selective gas chromatographic detectors used in pesticide residue analysis. A detailed study of the optimization and response characteristics of the CsBr and RbCl three-electrode alkali flame ionization detector for N and P compounds, the Coulson electrolytic conductivity detector in the nitrogen, sulphur and pyrolytic modes of operation and the sulphur phosphorus emission detector, a type of flame photometric detector, was carried out to obtain maximum sensitivity and reliability for the analysis of pesticide residues in various biological substrates. It was observed that the alkali flame and electrolytic conductivity detector responses to nitrogen compounds were of the same order, while the electrolytic conductivity detector was more sensitive than the flame photometric detector to sulphur compounds. Also, attempts were made to correlate the responses from these different detector systems using the insecticide chlorpyrifos which contains P, S, Cl and N atoms. The use of chlorpyrifos as an evaluation standard in verifying the acceptable performance of these types of detectors is recommended.Chemistry and Biology Research Institute Contribution No 901  相似文献   

18.
A method was developed for the analysis of volatile polar compounds in a water matrix using open cap vials Solid Phase Micro-Extraction (SPME) and Capillary Gas Chromatography (CGC). Both SPME techniques – direct sampling and headspace – were tested. Optimization of experimental conditions – exposure time, desorption time, with headspace SPME in addition the influence of the temperature and ionic strength of the sample solution on compound sorption, and finally GC response – were investigated. The analytes were extracted by directly immersing the 85 μm polyacrylate fiber in the aqueous sample or in the headspace. The linear range of the preconcentration process and the precision were examined. The amount of polar analytes sorbed on the fiber was determined and was found to be concentration dependent; it amounted to 0.014–0.64% in the concentration range of 0.00425–425 ppm studied in aqueous solution for direct sampling SPME and to 0.011–2.76% for solutions of concentration 0.0425–255 ppm for headspace SPME. The limits of determination were ascertained. Headspace SPME was applied to the analysis of real-life samples.  相似文献   

19.
Low‐molecular‐weight volatile sulfur compounds such as thiols, sulfides, disulfides as well as thioacetates cause a sulfidic off‐flavor in wines even at low concentration levels. The proposed analytical method for quantification of these compounds in wine is based on headspace solid‐phase microextraction, followed by gas chromatographic analysis with sulfur‐specific detection using a pulsed flame photometric detector. Robust quantification was achieved via a stable isotope dilution assay using commercial and synthesized deuterated isotopic standards. The necessary chromatographic separation of analytes and isotopic standards benefits from the inverse isotope effect realized on an apolar polydimethylsiloxane stationary phase of increased film thickness. Interferences with sulfur‐specific detection in wine caused by sulfur dioxide were minimized by addition of propanal. The method provides adequate validation data, with good repeatability and limits of detection and quantification. It suits the requirements of wine quality management, allowing the control of oenological treatments to counteract an eventual formation of excessively high concentration of such malodorous compounds.  相似文献   

20.
Summary A fast and simple headspace SPME sampling method has been developed for quantification of volatile aliphatic aldehydes in sunflower oil. Analysis has been performed by gas chromatography, on a 30m×0.25 mm i.d. ×0.25 μm CP-Wax 52CB column, with mass spectrometric detection. Carryover from the SPME fiber could be eliminated by heating the fiber in the injection port between runs. Response factors of all the compounds were linear for concentrations up to 100 ng μL−1. The slopes of the calibration curves decrease with the amount of saturation of the aldehydes. The average responses for unsaturated aldehydes were twice as high as those for the saturated variety. Responses for dienes were approximately one order of magnitude higher than for saturated aldehydes. Depletion of the analyte was examined by repeated extraction from the same vial. SPME was optimized—after 30 min extraction most components were found to have reached equilibration. The detection limit for the compounds studied varied between 0.1 and 1 ng μL−1. Distribution constants were determined for ten different aldehydes and Henry's constants were calculated for unsaturated aldehydes. There was a definite relationship between the response factors and the amount of saturation of the aldehydes. Presented at: Balaton Symposium on High-Performance Separation Methods, Siófok, Hungary, September 3–5, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号