首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
杨微  李晓蕾  王长生 《物理化学学报》2015,31(12):2285-2293
使用高精度从头算方法(含基组重叠误差校正)计算了水团簇(H2O)n (n = 8, 10, 16, 20, 22, 24)中的所有二体、三体和四体作用能,分析了水团簇中的多体效应.研究表明,二体作用对体系总作用能的贡献高达70%以上,三体作用对总作用能的贡献可高达25%,四体作用在总作用能中所占比例不超过3%,五体及以上多体作用能在总作用能中所占比例更小,不超过0.5%.本文研究还表明,两个水分子间距小于0.68 nm的二体作用、三个和四个水分子中最近的两个水分子间距小于0.31 nm的三体和四体作用对体系总作用能的贡献高达99.4%.因此,以生物体系为对象的分子模拟方法应该具备准确地模拟两个水分子间距小于0.68 nm的二体作用、三个和四个水分子中最近的两个分子间距小于0.31 nm的三体和四体作用的能力.  相似文献   

2.
快速准确预测醇及脱氧核糖分子与水形成的氢键复合物的三体作用强度, 对准确模拟水环境下蛋白质和DNA的结构和功能至关重要. 基于对多体极化作用的理解, 在可极化偶极-偶极作用模型(PBFF)基础上, 将体系中的极性化学键视为化学键偶极, 通过模拟键偶极的极化计算了醇及脱氧核糖与水分子形成的氢键复合物的三体作用能. 通过拟合甲醇与水氢键复合物的三体作用能随分子间距离变化的能量曲线确定了所需的参数. 将模型和所确定的参数应用于计算更多的甲醇、 乙醇及脱氧核糖与水氢键复合物的三体作用能, 检验了模型的准确性和参数的可转移性. 计算结果表明, 可极化偶极-偶极作用模型及所确定的参数能够较好地预测具有不同结构的氢键复合物的三体作用强度, 其精度可与MP2方法的计算精度相当.  相似文献   

3.
He-LiH体系转动非弹性碰撞的理论研究   总被引:5,自引:3,他引:5  
在单双迭代耦合簇CCSD(T)势能面的基础上,运用密耦方法讨论了He-LiH体系的转动非弹性碰撞.计算结果表明,对LiH分子j=0→j′跃迁,跃迁截面主要由各向异性的短程相互作用和长程的“软”排斥共同作用的结果,未见明显的长程吸引势贡献.态-态跃迁总截面表现出振荡结构,长程“软”排斥分波只对j=0向j′=1、2、3的跃迁总截面有较大贡献,而j′≥ 4跃迁的积分截面则几乎由各向异性的短程部分贡献.  相似文献   

4.
本文提出了一种可快速计算Anion-π作用强度的方法。该方法包含静电、极化和范德华作用。我们将取代苯的C≡N、C―F和C―H化学键作为键偶极,通过阴离子和取代苯的键偶极间相互作用来计算静电作用,根据键偶极大小随着环境变化而改变来计算极化作用。文中所需参数由模拟CCSD(T)/CBS势能曲线而确定。将本文方法应用于一系列卤素阴离子和取代苯间的Anion-π相互作用的快速计算,并与CCSD(T)/CBS方法的计算结果进行了比较。计算结果表明,本文方法得到的势能曲线与CCSD(T)/CBS势能曲线符合很好;与CCSD(T)/CBS方法的计算结果比较,本文方法预测平衡分子间距离均方根偏差为0.004 nm,相互作用能均方根偏差为2.81 k J?mol~(-1),说明本文方法合理可靠。本文方法可望在相关分子材料设计模拟领域发挥作用。  相似文献   

5.
高级量子化学从头计算法研究N2和H2O分子间相互作用   总被引:4,自引:2,他引:2  
在MP2/6-311++G(3d,3p)电子相关校正水平上,对N2和H2O分子间可能存在的氢键复合物进行全自由度能量梯度优化,发现了一个接近于直线的弱氢键总能量极小结构(1),进一步在高级电子相关校正的MP4SDTQ和CCSD(T)水平,用6-311++G(3d,3p)基组加上(3s3p2d1f)键函数,用MP4和CCSD(T)计算的结构1的结合能分别为-5.061kJ/mol和-4.715kJ/mol.  相似文献   

6.
用多体微扰方法MP6对三个非氢原子组成的分子体系,分别在cc-pVDZ、cc-pVTZ、和cc-pVQZ基组下,进行了构型优化计算,并利用Dunning提出的经验公式把结果外推到CBS极限。由于各种误差的相互抵消,MP2的构型优化结果较MP6或MP4的好。用耦合簇方法(CCSD(T))在同样条件下进行了优化计算,结果比微扰方法更具有优势。  相似文献   

7.
Ne-CO2的从头算势能面及微波光谱   总被引:1,自引:1,他引:0  
采用三重激发校正的耦合簇[CCSD(T)]方法和大基组计算了范德华复合物Ne-CO2的分子间势能面. 分子间相互作用能的计算采用考虑了基组重叠误差修正的超分子方法. 计算结果表明, 该势能面有两个极小值点, 分别对应T形构型和线性Ne-OCO构型. 采用离散变量表象(DVR)方法及Lanczos算法计算了Ne-CO2的振转能级. 计算结果表明, 体系势能面支持22个振动束缚态. 计算得到的微波光谱的跃迁频率与实验值吻合得很好.  相似文献   

8.
使用高水平的从头算CCSD(T)/aug-cc-pVTZ方法, 经过Counterpoise校正, 计算了He2F-体系的分子间相互作用势能面. 在He2F-体系的相互作用势能面的最小值处, 发现了一个等腰三角形的稳定结构. 在这个结构中, He…F- 距离是 0.334 nm, He…He 的距离是 0.295 nm, ∠HeF-He 为 52.5°. 计算了此稳定结构的频率、相互作用能、二体相互作用能和三体相互作用能. 在CCSD(T)/d-aug-cc-pVTZ水平下, 相互作用能为-1.727 kJ/mol.  相似文献   

9.
采用包含BSSE校正的MP2/aug-cc-pVTZ方法对酰胺、二肽、尿嘧啶和水分子形成的氢键复合物的三体效应进行了研究,分析了三体作用能对体系总作用能的贡献.结果表明,在这些氢键复合物中,三体作用能占体系总作用能的10%~20%,三体作用属于近程作用,因此在分子模拟中至少应考虑近处的三体效应.  相似文献   

10.
徐森  吴丽铃  李震宇 《化学学报》2022,80(5):598-606
由于气相分子密度低, 对气相成核过程的理论模拟往往需要很大的计算量. 为了提高模拟效率, 本工作将神经网络势与增强采样技术结合, 并以水团簇成核为例进行了研究. 采用密度泛函理论方法对不同尺寸的水团簇进行了能量和力的计算, 并由此训练出一套能较好描述水团簇体系相互作用的神经网络势. 将这个势应用于蒙特卡洛模拟并结合多种增强采样方法, 实现了在不同尺寸水团簇之间的随机行走, 由此可得到水团簇在特定条件下的概率分布以及吉布斯自由能. 通过后续的蒙特卡洛模拟结合伞形采样和变分过渡态理论, 可以进一步计算出不同水团簇的水分子蒸发速率. 观察到了四聚体到五聚体的自由能和蒸发速率的突变现象. 结构分析表明虽然五聚体的最低能量构型是二维环状结构, 但是在有限温度下五聚体中三维氢键网络已经开始形成. 这导致了在四聚体过渡到五聚体时的异常. 本工作提供的第一性原理精度下对气相水团簇成核进行研究的方法可以推广到更为复杂的多组分体系, 为研究大气颗粒物形成机理奠定了基础.  相似文献   

11.
The CCSD(T) interaction energies for the H‐bonded and stacked structures of the uracil dimer are determined at the aug‐cc‐pVDZ and aug‐cc‐pVTZ levels. On the basis of these calculations we can construct the CCSD(T) interaction energies at the complete basis set (CBS) limit. The most accurate energies, based either on direct extrapolation of the CCSD(T) correlation energies obtained with the aug‐cc‐pVDZ and aug‐cc‐pVTZ basis sets or on the sum of extrapolated MP2 interaction energies (from aug‐cc‐pVTZ and aug‐cc‐pVQZ basis sets) and extrapolated ΔCCSD(T) correction terms [difference between CCSD(T) and MP2 interaction energies] differ only slightly, which demonstrates the reliability and robustness of both techniques. The latter values, which represent new standards for the H‐bonding and stacking structures of the uracil dimer, differ from the previously published data for the S22 set by a small amount. This suggests that interaction energies of the S22 set are generated with chemical accuracy. The most accurate CCSD(T)/CBS interaction energies are compared with interaction energies obtained from various computational procedures, namely the SCS–MP2 (SCS: spin‐component‐scaled), SCS(MI)–MP2 (MI: molecular interaction), MP3, dispersion‐augmented DFT (DFT–D), M06–2X, and DFT–SAPT (SAPT: symmetry‐adapted perturbation theory) methods. Among these techniques, the best results are obtained with the SCS(MI)–MP2 method. Remarkably good binding energies are also obtained with the DFT–SAPT method. Both DFT techniques tested yield similarly good interaction energies. The large magnitude of the stacking energy for the uracil dimer, compared to that of the benzene dimer, is explained by attractive electrostatic interactions present in the stacked uracil dimer. These interactions force both subsystems to approach each other and the dispersion energy benefits from a shorter intersystem separation.  相似文献   

12.
The popular method of calculating the noncovalent interaction energies at the coupled-cluster single-, double-, and perturbative triple-excitations [CCSD(T)] theory level in the complete basis set (CBS) limit was to add a CCSD(T) correction term to the CBS second-order Møller-Plesset perturbation theory (MP2). The CCSD(T) correction term is the difference between the CCSD(T) and MP2 interaction energies evaluated in a medium basis set. However, the CCSD(T) calculations with the medium basis sets are still very expensive for systems with more than 30 atoms. Comparatively, the domain-based local pair natural orbital coupled-cluster method [DLPNO-CCSD(T)] can be applied to large systems with over 1,000 atoms. Considering both the computational accuracy and efficiency, in this work, we propose a new scheme to calculate the CCSD(T)/CBS interaction energies. In this scheme, the MP2/CBS term keeps intact and the CCSD(T) correction term is replaced by a DLPNO-CCSD(T) correction term which is the difference between the DLPNO-CCSD(T) and DLPNO-MP2 interaction energies evaluated in a medium basis set. The interaction energies of the noncovalent systems in the S22, HSG, HBC6, NBC10, and S66 databases were recalculated employing this new scheme. The consistent and tight settings of the truncation parameters for DLPNO-CCSD(T) and DLPNO-MP2 in this noncanonical CCSD(T)/CBS calculations lead to the maximum absolute deviation and root-mean-square deviation from the canonical CCSD(T)/CBS interaction energies of less than or equal to 0.28 kcal/mol and 0.09 kcal/mol, respectively. The high accuracy and low cost of this new computational scheme make it an excellent candidate for the study of large noncovalent systems.  相似文献   

13.
A comparison of the performance of various density functional methods including long‐range corrected and dispersion corrected methods [MPW1PW91, B3LYP, B3PW91, B97‐D, B1B95, MPWB1K, M06‐2X, SVWN5, ωB97XD, long‐range correction (LC)‐ωPBE, and CAM‐B3LYP using 6‐31+G(d,p) basis set] in the study of CH···π, OH···π, and NH···π interactions were done using weak complexes of neutral (A) and cationic (A+) forms of alanine with benzene by taking the Møller–Plesset (MP2)/6‐31+G(d,p) results as the reference. Further, the binding energies of the neutral alanine–benzene complexes were assessed at coupled cluster (CCSD)/6‐31G(d,p) method. Analysis of the molecular geometries and interaction energies at density functional theory (DFT), MP2, CCSD methods and CCSD(T) single point level reveal that MP2 is the best overall performer for noncovalent interactions giving accuracy close to CCSD method. MPWB1K fared better in interaction energy calculations than other DFT methods. In the case of M06‐2X, SVWN5, and the dispersion corrected B97‐D, the interaction energies are significantly overrated for neutral systems compared to other methods. However, for cationic systems, B97‐D yields structures and interaction energies similar to MP2 and MPWB1K methods. Among the long‐range corrected methods, LC‐ωPBE and CAM‐B3LYP methods show close agreement with MP2 values while ωB97XD energies are notably higher than MP2 values. © 2010 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

14.
Stabilisation energies of stacked structures of C(6)H(6)...C(6)X(6) (X = F, Cl, Br, CN) complexes were determined at the CCSD(T) complete basis set (CBS) limit level. These energies were constructed from MP2/CBS stabilisation energies and a CCSD(T) correction term determined with a medium basis set (6-31G**). The former energies were extrapolated using the two-point formula of Helgaker et al. from aug-cc-pVDZ and aug-cc-pVTZ Hartree-Fock energies and MP2 correlation energies. The CCSD(T) correction term is systematically repulsive. The final CCSD(T)/CBS stabilisation energies are large, considerably larger than previously calculated and increase in the series as follows: hexafluorobenzene (6.3 kcal mol(-1)), hexachlorobenzene (8.8 kcal mol(-1)), hexabromobenzene (8.1 kcal mol(-1)) and hexacyanobenzene (11.0 kcal mol(-1)). MP2/SDD** relativistic calculations performed for all complexes mentioned and also for benzene[dot dot dot]hexaiodobenzene have clearly shown that due to relativistic effects the stabilisation energy of the hexaiodobenzene complex is lower than that of hexabromobenzene complex. The decomposition of the total interaction energy to physically defined energy components was made by using the symmetry adapted perturbation treatment (SAPT). The main stabilisation contribution for all complexes investigated is due to London dispersion energy, with the induction term being smaller. Electrostatic and induction terms which are attractive are compensated by their exchange counterparts. The stacked motif in the complexes studied is very stable and might thus be valuable as a supramolecular synthon.  相似文献   

15.
16.
The gas-phase structure, stability, spectra, and electron density topography of H(-)W(n) clusters (where n = 1-8) have been calculated using coupled-cluster CCSD(T) and M?ller-Plesset second-order perturbation (MP2) theory combined with complete basis set (CBS) approaches. The performance of various density functional theory (DFT) based methods such as B3LYP, M05-2X, M06, M06-L, and M06-2X using 6-311++G(d,p), and aug-cc-pVXZ (aVXZ, where X = D, T, and Q) basis sets has also been assessed by considering values calculated using CCSD(T)/CBS limit as reference. The performance of the functionals has been ranked based on the mean signed/unsigned error. The comparison of geometrical parameters elicits that the geometrical parameters predicted by B3LYP/aVTZ method are in good agreement with those values obtained at MP2/aVTZ level of theory. Results show that M05-2X functional outperform other functionals in predicting the energetics when compared to CCSD(T)/CBS value. On the other hand, values predicted by M06-2X, and M06 methods, are closer to those values obtained from MP2/CBS approach. It is evident from the calculations that H(-)W(n) (where n = 5-8) clusters adopt several interesting structural motifs such as pyramidal, prism, book, Clessidra, cubic, cage, and bag. The important role played by ion-water (O-H···H(-)) and water-water (O-H···O) interactions in determining the stability of the clusters has also been observed. Analysis of the results indicates that the most stable cluster is made up of minimum number of O-H···H(-) interaction in conjugation with the maximum number of O-H···O interactions. The Bader theory of atoms in molecules (AIM) and natural bond orbital (NBO) analyses has also been carried out to characterize the nature of interactions between hydride ion and water molecules. It can be observed from the vibrational spectra of H(-)W(n) clusters, the stretching frequencies involving ion-water interaction always exhibit larger redshift and intensities than that of water-water (inter solvent) interactions.  相似文献   

17.
The characteristics of the interaction between the pi cloud of naphthalene and up to two H2O or H2S molecules were studied. Calculations show that clusters formed by naphthalene and one H2O or H2S molecule have similar geometric features, and also present similar interaction energies. Our best estimates for the interaction energy amount to -2.95 and -2.92 kcal/mol for H2O and H2S, respectively, as obtained with the CCSD(T) method. Calculations at the MP2 level employing large basis sets should be avoided because they produce highly overestimated interaction energies, especially for hydrogen sulfide complexes. The MPWB1K functional, however, provides values pretty similar to those obtained with the CCSD(T) method. Although the magnitude of the interaction is similar with both H2X molecules, its nature is somewhat different: the H2O complex presents electrostatic and dispersion contributions of similar magnitude, whereas for H2S the interaction is dominated by dispersion. In clusters containing two H2X molecules several minima were characterized. In water clusters, the total interaction energy is dominated by the presence of a O-H...O hydrogen bond and, as a consequence, structures where this contact is present are the most stable. However, clusters containing H2S show structures with no interaction between H2S moieties which are as stable as the hydrogen bonded ones, because they allow an optimal H2S...naphthalene interaction, which is stronger than the S-H...S contact. Therefore it is possible that in larger polycycles hydrogen sulfide molecules will be spread onto the surface maximizing S-H...pi interactions rather than aggregated, forming H2S clusters.  相似文献   

18.
A model chemistry for the evaluation of intermolecular interaction between aromatic molecules (AIMI Model) has been developed. The CCSD(T) interaction energy at the basis set limit has been estimated from the MP2 interaction energy near the basis set limit and the CCSD(T) correction term obtained by using a medium size basis set. The calculated interaction energies of the parallel, T-shaped,and slipped-parallel benzene dimers are -1.48, -2.46, and -2.48 kcal/mol, respectively. The substantial attractive interaction in benzene dimer, even where the molecules are well separated, shows that the major source of attraction is not short-range interactions such as charge-transfer but long-range interactions such as electrostatic and dispersion. The inclusion of electron correlation increases attraction significantly. The dispersion interaction is found to be the major source of attraction in the benzene dimer. The orientation dependence of the dimer interaction is mainly controlled by long-range interactions. Although electrostatic interaction is considerably weaker than dispersion interaction, it is highly orientation dependent. Dispersion and electrostatic interactions are both important for the directionality of the benzene dimer interaction.  相似文献   

19.
The MP2 (the second-order M?ller-Plesset calculation) and CCSD(T) (coupled cluster calculation with single and double substitutions with noniterative triple excitations) interaction energies of all-trans n-alkane dimers were calculated using Dunning's [J. Chem. Phys. 90, 1007 (1989)] correlation consistent basis sets. The estimated MP2 interaction energies of methane, ethane, and propane dimers at the basis set limit [EMP2(limit)] by the method of Helgaker et al. [J. Chem. Phys. 106, 9639 (1997)] from the MP2/aug-cc-pVXZ (X=D and T) level interaction energies are very close to those estimated from the MP2/aug-cc-pVXZ (X=T and Q) level interaction energies. The estimated EMP2(limit) values of n-butane to n-heptane dimers from the MP2/cc-pVXZ (X=D and T) level interaction energies are very close to those from the MP2/aug-cc-pVXZ (X=D and T) ones. The EMP2(limit) values estimated by Feller's [J. Chem. Phys. 96, 6104 (1992)] method from the MP2/cc-pVXZ (X=D, T, and Q) level interaction energies are close to those estimated by the method of Helgaker et al. from the MP2/cc-pVXZ (X=T and Q) ones. The estimated EMP2(limit) values by the method of Helgaker et al. using the aug-cc-pVXZ (X=D and T) are close to these values. The estimated EMP2(limit) of the methane, ethane, propane, n-butane, n-pentane, n-hexane, n-heptane, n-octane, n-nonane, and n-decane dimers by the method of Helgaker et al. are -0.48, -1.35, -2.08, -2.97, -3.92, -4.91, -5.96, -6.68, -7.75, and -8.75 kcal/mol, respectively. Effects of electron correlation beyond MP2 are not large. The estimated CCSD(T) interaction energies of the methane, ethane, propane, and n-butane dimers at the basis set limit by the method of Helgaker et al. (-0.41, -1.22, -1.87, and -2.74 kcal/mol, respectively) from the CCSD(T)/cc-pVXZ (X=D and T) level interaction energies are close to the EMP2(limit) obtained using the same basis sets. The estimated EMP2(limit) values of the ten dimers were fitted to the form m0+m1X (X is 1 for methane, 2 for ethane, etc.). The obtained m0 and m1 (0.595 and -0.926 kcal/mol) show that the interactions between long n-alkane chains are significant. Analysis of basis set effects shows that cc-pVXZ (X=T, Q, or 5), aug-cc-pVXZ (X=D, T, Q, or 5) basis set, or 6-311G** basis set augmented with diffuse polarization function is necessary for quantitative evaluation of the interaction energies between n-alkane chains.  相似文献   

20.
Water hexamers provide a critical testing ground for validating potential energy surface predictions because they contain structural motifs not present in smaller clusters. We tested the ability of 11 density functionals (four of which are local and seven of which are nonlocal) to accurately predict the relative energies of a series of low-lying water hexamers, relative to the CCSD(T)/aug'-cc-pVTZ level of theory, where CCSD(T) denotes coupled cluster theory with an interative treatment of single and double excitations and a quasi-perturbative treatment of connected triple excitations. Five of the density functionals were tested with two different basis sets, making a total of 16 levels of density functional theory (DFT) tested. When single-point energy calculations are carried out on geometries obtained with second-order M?ller-Plesset perturbation theory (MP2), only three density functionals, M06-L, M05-2X, and M06-2X, are able to correctly predict the relative energy ordering of the hexamers. These three functionals predict that the range of energies spanned by the six isomers is 3.2-5.6 kcal/mol, whereas the other eight functionals predict ranges of 1.0-2.4 kcal/mol; the benchmark value for this range is 3.1 kcal/mol. When the hexamers are optimized at each level of theory, all methods are able to reproduce the MP2 geometries well for all isomers except the boat and bag isomers, and DFT optimization changes the energy ordering for seven of the 16 methods tested. The addition of zero-point energy changes the energy ordering for all of the density functionals studied except for M05-2X and M06-2X. The variation in relative energies predicted by the different methods highlights the necessity for exercising caution in the choice of density functionals used in future studies. Of the 11 density functionals tested, the most accurate results for energies were obtained with the PWB6K, MPWB1K, and M05-2X functionals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号