首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
锂离子电池用多孔硅/石墨/碳复合负极材料的研究   总被引:2,自引:0,他引:2  
在两步高能球磨和酸蚀条件下制得了多孔硅/石墨复合材料,并对其进行碳包覆制成多孔硅/石墨/碳复合材料。通过TEM,SEM等测试手段研究了多孔硅材料的结构。作为锂离子电池负极材料,电化学测试结果表明多孔硅/石墨/碳复合材料相比纳米硅/石墨/碳复合材料有更好的循环稳定性。同时,改变复合体配比、热解碳前驱物、粘结剂种类和用量也会对材料的电化学性能产生较大的影响。其中使用质量分数为10%的LA132粘结剂的电极200次循环以后充电容量保持在649.9 mAh·g-1,几乎没有衰减。良好的电化学性能主要归因于主活性体-多孔硅颗粒中的纳米孔隙很好地抑制了嵌锂过程中自身的体积膨胀,而且亚微米石墨颗粒和碳的复合也减轻了电极材料的体积效应并改善了其导电性。  相似文献   

2.
本文以工业硅粉(600目)为原料,通过高能球磨和热解包碳方法制备了碳包覆纳米硅,在此基础上采用简单的机械球磨方法制备了碳包覆/石墨复合材料,并系统研究了碳包覆量及硅/石墨比例对碳包覆硅/石墨复合材料电化学性能的影响.与商业纳米硅粉/石墨复合材料相比,工业硅粉/石墨复合材料的循环性能及倍率性能均得到改善.通过高能球磨和热处理法得到的碳包覆材料为无定形碳和晶态硅材料的复合,所获碳包覆硅材料一次颗粒的粒径在100~200 nm左右.碳包覆量对材料的电化学性能有着重要影响,Si/C-2-1复合材料表现出高的可逆比容量、良好的倍率性能和循环稳定性,在0.1C倍率下,可逆比容量高达492.6 mA h·g~(-1),循环100周后容量保持率达85.8%,1C电流密度下放电比容量达369.7 mAh·g~(-1),为0.1C的73.9%.提高碳包覆硅/石墨复合材料中硅含量的比例可以提升其比容量,当硅含量达到20%时,Si/C-2-3复合材料在0.1C倍率下可逆比容量达到600.4 mAh·g~(-1),但材料循环性能有所下降,说明石墨在稳定硅/碳复合材料循环性能方面发挥着非常重要的作用.  相似文献   

3.
通过自组装方式采用一步法制备了锂离子电池硅碳复合电极材料.使用X射线衍射仪(XRD)、透射电子显微镜(TEM)和扫描电子显微镜(SEM)等对样品结构进行表征.结果表明,聚乙烯吡咯烷酮(PVP)包覆的纳米硅颗粒(Si@PVP)均匀嵌入到具有三维网络纳米孔结构的导电石墨化炭黑(GCB)骨架中,形成核壳复合型(Si@PVP-GCB)纳米颗粒,既提高了该复合电极材料的导电性能,又改善了材料的机械强度.在纳米级GCB颗粒内部存在的中空石墨环结构和包覆在纳米Si颗粒外面的PVP包覆层都有效缓冲了纳米Si颗粒在充放电过程中较大的体积变化,从而使纳米Si颗粒更加稳定.电化学测试结果表明,Si@PVP-GCB电极材料在电流密度为50 m A/g时,经过100次循环后其可逆容量仍达到545 m A·h/g时,远高于商品化的石墨微球(GMs)电极材料的容量(理论容量为372 m A·h/g).  相似文献   

4.
锂离子电池用硅/碳复合负极材料   总被引:11,自引:0,他引:11  
王保峰  杨军  解晶莹  王可  文钟晟  喻献国 《化学学报》2003,61(10):1572-1576
以聚氯乙烯(PVC)、纳米硅粉和小粒径的人造石墨为前驱物,利用高温热解 反应,使纳米的硅和石墨微粒高度均匀地分散在PVC热解产生的碳中,形成一种新 型硅碳复合嵌锂材料,电化学测试表明:该复合材料首次充放电效率约为84%。可 逆比窝容量500mAh·g~(-1)左右,30次循环后容量维持在90%以上。另外,该复 合材料充放电平台经目前锂离子电池广泛采用的中间相碳微球(CMS)高0.15V左右 ,这有助于提高电池的充电倍率性能和操作安全性。  相似文献   

5.
以微米级SiO为原料,通过简单的高温煅烧、碳包覆和酸刻蚀制备多孔氧化硅/硅/碳复合材料,复合材料比表面积和平均孔径分别为32.9 m~2/g和3 nm。纳米硅分散在缓冲介质氧化硅多孔体系中,表面包覆一层薄而均匀的碳层。所得的复合材料具有较好的循环稳定性,在0.3 m A/g下,50次循环后可逆容量保持在645.1 m A·h/g。多孔结构、氧化硅缓解了硅在脱嵌锂过程的体积膨胀,碳层提高了复合材料的导电性和结构稳定性。  相似文献   

6.
硅由于其超高的理论比容量有望取代石墨成为下一代锂离子电池负极材料,但是硅在充放电过程中巨大的体积膨胀(~300%)会导致材料粉化从集流体上脱落,同时不断形成固相电解质层,造成不可逆容量损失,而材料纳米化和碳复合是解决这些问题的有效手段。本文介绍了硅在循环过程中容量衰减机理,并综述了硅纳米粒子与碳材料复合的最新进展,主要包括包覆型、核壳型以及嵌入型硅碳负极材料,并对核壳型与嵌入型做了重点探究,最后对硅纳米粒子/碳复合材料存在的问题进行分析并展望其研究前景。  相似文献   

7.
金属锂由于其极高的理论比容量(3860mAh·g~(-1),2061mAh·cm~(-3))和低的还原电势(相对于标准氢电极(SHE)为-3.04 V)等特点,成为了高能量密度锂电池负极材料的极佳选择之一。从上个世纪七十年代开始,科研工作者便开始了金属锂负极的研究,然而,由于金属锂与电解液反应严重,镀锂过程体积膨胀大,且在循环中易生成枝晶,以金属锂为负极的电池循环稳定性差,而且容易短路从而带来安全隐患。因此金属锂做为锂电池负极的商业化推广最终没有成功。在本工作中,我们在前期设计的锂-碳纳米管复合微球(Li-CNT)中引入了纳米硅颗粒制备了硅颗粒担载的锂-碳复合球(LiCNT-Si)。实验发现,纳米硅颗粒的加入不仅提高了锂-碳复合微球的载锂量(10%(质量百分含量)的硅添加量使得比容量从2000 mAh·g~(-1)提高到2600 mAh·g~(-1)),降低了锂的沉积/溶解过电势,有利于引导锂离子回到复合微球内部沉积,大大提高了材料的循环稳定性。同时,担载了纳米硅颗粒的锂-碳复合球也继承了锂-碳复合微球循环过程中体积膨胀小,不长枝晶的优点。而且添加的纳米硅颗粒还填充了Li-CNT微球中的孔隙,减少了电解液渗入复合微球内部腐蚀里面的金属锂,进一步提高了材料的库仑效率。以添加10%硅的锂碳复合材料作为负极,与商用磷酸铁锂正极组成全电池,在常规酯类电解液中1C (0.7 mA·cm~(-2))条件下能稳定循环900圈以上,库仑效率为96.7%,大大高于同样条件下测得的Li-CNT复合材料(90.1%)和金属锂片(79.3%)的库仑效率。因此,这种通过简单的熔融浸渍法即可制备的,具有高的比容量和长的循环稳定性的锂硅-碳复合材料具有较大的潜能成为高能量密度电池的负极材料,尤其适用于锂硫、锂氧这种正极不含锂源的电池体系。  相似文献   

8.
开发了一种一步高效合成纳米硅/碳复合材料的新方法, 该方法通过球磨SiCl4、 Mg2Si和商业碳片, 使SiCl4自下而上还原, 原位形成的纳米硅均匀生长在碳片上, 高效制备了纳米硅与碳片均匀复合物(Nano-Si/C). 该Nano-Si/C用作锂离子电池负极材料展现出高的可逆储锂容量(2450 mA·h/g)、 良好的倍率性能及优异的长循环稳定性, 在2 A/g电流密度下, 经过600次循环后, 容量仍然稳定在1400 mA·h/g. 其突出的电化学性能主要归因于小尺寸纳米硅与碳片均匀复合的纳米结构, 在循环嵌锂/脱锂过程中仍能保持结构和电化学性质的稳定性.  相似文献   

9.
通过经济有效的方法制备得到一种具有长循环寿命的高效稳定性硅/硅氧碳/无定形碳的复合负极材料结构.在这种结构中,以具有稳定化学性能的硅氧碳结构作为骨架,来支撑和隔离硅纳米颗粒结构.材料中包含的无定形碳组分可提高硅/硅氧碳结构的电导性能.这种复合负极结构在0.3C电流充放电情况下,不仅能发挥出637.3 mAh·g-1的比容量,而且在经过100周的充放电循环后,其容量保持率也达到86%.这种新型硅基负极材料的设计为其他功能材料的设计提供了一种潜在可能的方法.  相似文献   

10.
以Li13Si4和SiCl4为原料,通过简单的机械球磨法合成多孔硅/碳复合材料,通过控制Li13Si4颗粒的尺寸可以有效调节产物的比表面积。分别研究了包覆碳含量、多孔硅/Super P(导电碳)比表面积以及极片活性物质负载量对多孔硅/碳复合材料电化学性能的影响。结果表明:多孔硅/Super P比表面积为100.9 m2·g-1,化学气相沉积(CVD)包覆碳含量为25.3wt%(约6 nm厚)的复合材料具有最高的电化学活性,在300 mA·g-1的电流密度下,循环可逆比容量达到1 900 mAh·g-1,50次循环后容量仅衰减7.6%。  相似文献   

11.
采用溶胶-凝胶法, 用二氧化钼(MoO2)和C共同包覆Si/石墨粒子制备了Si/石墨/MoO2/C锂离子电池负极材料. 利用X射线衍射(XRD)、 扫描电子显微镜(SEM)、 透射电子显微镜(TEM)、 循环伏安(CV)和电化学阻抗(EIS)等分析了材料的形貌和性质. 结果表明, MoO2/C的共包覆在缓解材料体积膨胀的同时提高了材料的电子和离子电导率, 进而提高了材料的电化学性能. 复合材料的首次充电比容量为2494 mA·h/g, 首次库仑效率为72%, 经过100次循环后比容量为636.6 mA·h/g.  相似文献   

12.
本文采用市售纳米硅为硅源,以软化点低、得碳率高、价格便宜的煤沥青作为碳源,通过两步包覆法制备了煤沥青基硅/碳(Si/C/C)复合物,并研究其作为锂离子电池负极材料的电化学性能。 结果表明,所得复合物的粒径在300~350 nm间,Si纳米粒子被C包覆并相互连结成C-Si-C网络结构,其中Si含量为27%的硅/碳复合物(Si/C/C-27%)作为锂电池电极材料表现了良好的储锂性能。 在0.1 A/g的小电流密度下,Si/C/C-27%的放电比容量为1281 mA·h/g;在3 A/g的大电流密度下,其放电比容量仍能保持在582 mA·h/g,表现了良好的倍率性能。Si/C/C-27%在2 A/g的电流密度下经过100次的循环后其比容量保持率为76.61%,表现了良好的循环稳定性。 相比于煤沥青基碳的一次包覆所得的硅/碳复合材料(Si/C),Si/C/C有效提高了Si纳米粒子的导电性并抑制了其在嵌锂和脱锂过程中的体积膨胀。 本文提出的二次包覆的新方法为制备具有优异电化学性能的锂离子电池负极材料提供了新的研究思路。  相似文献   

13.
以金属有机框架材料MIL-125(Ti)为模板制备了多孔TiO2, 同时引入碳纳米管, 得到碳纳米管交联包覆多孔TiO2的三维导电复合材料. 将该复合材料涂覆在隔膜表面并应用于锂硫电池. 利用透射电子显微镜(TEM)、 扫描电子显微镜(SEM)和X射线光电子能谱仪(XPS)等对材料的结构和组成进行了表征. 电化学测试结果表明,在0.5C(1C=1675 mA/g)倍率下, CNTs/S复合正极材料表现出高达1051.1 mA·h/g的放电容量, 循环150周后仍可保持在904.8 mA·h/g. 在1C倍率下, 放电容量最高可达1036.9 mA·h/g, 循环250周后仍有763.0 mA·h/g, 展现出了良好的倍率性能和循环稳定性.  相似文献   

14.
陈丽辉  吴秋晗  潘佩  宋子轩  王锋  丁瑜 《应用化学》2018,35(11):1384-1390
采用模板导向法和高温固相法制备尖晶石型八面体结构的LiMn2O4锂离子电池正极材料,研究了该材料的结构和电化学性能。 电化学性能研究表明,该电极材料具有良好的循环稳定性和倍率性能,在2.5~4.5 V电压范围,电流密度为100 mA/g时,首周充放电比容量分别为147和179 mA·h/g,循环50周后,其充放电比容量仍分别保持在180/181 mA·h/g。 优良的电化学性能可能归因于尖晶石LiMn2O4的形貌结构特征,该方法为制备锂离子电池正极材料提供了思路和依据。  相似文献   

15.
采用溶胶-凝胶法合成了Li1.18Ni0.15Co0.15Mn0.52O2富锂层状正极材料, 并使用聚(3-己基噻吩)对其进行了表面包覆. 采用多种光谱学和电化学手段对材料的形貌结构和电化学性能进行了分析. 结果表明, 聚(3-己基噻吩)溶液浸泡后在富锂材料表面形成厚约1.5 nm的均匀包覆层. 表面包覆后富锂层状正极材料的极化和阻抗明显减小. 在0.2C倍率下, 经过100次充放电循环后, 未包覆的富锂材料放电比容量衰减为170 mA·h/g, 而经过0.3%聚(3-己基噻吩)包覆的材料的放电比容量则保持在205 mA·h/g, 容量保持率由68%提高到82%; 10C倍率下的放电比容量由72 mA·h/g提高到116 mA·h/g.  相似文献   

16.
王锋  胡新良  张鹏  赵双琪  丁瑜 《应用化学》2015,32(10):1184-1189
以十六烷基三甲基溴化铵(CTAB)为模板,硝酸铁和硝酸铜为起始物,采用一步微波法,再经过简单的热处理制备了CuFe2O4负极材料,采用X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、傅里叶红外光谱(FT-IR)等测试技术表征材料的结构和形貌。 电化学测试表明,在100 mA/g电流密度,0.01~3.0 V电压条件下,材料的首周嵌脱锂比容量分别为1202.2和873.2 mA·h/g,循环50周后,嵌锂比容量仍保持在近650 mA·h/g,显示出优异的电化学性能。  相似文献   

17.
以Ca3N2为前驱体,用高温热解法制备了2D层状结构Ca2N 并用X射线和扫描电镜对Ca2N的组成、结构和形貌进行了表征。 作为钠离子电池新型负极材料,在50 mA/g电流密度充放电,首次放电比容量可达584 mA·h/g,可逆比容量达180 mA·h/g。在2000 mA/g大电流密度下,仍有70 mA·h/g。  相似文献   

18.
利用物理浸渍和冷冻干燥等方法制备了具有三维网状结构的Ru/石墨烯/碳纳米管复合材料, 对该材料的结构、 形貌及电化学性能进行了表征和研究. 结果表明, 当Ru含量为30%, 热处理温度为500 ℃时, 材料的催化性能最优. 将其用作锂氧电池的正极催化剂, 以50 mA/g电流密度进行首次充放电时, 放电比容量约为5800 mA·h/g, 且在放电比容量为4000 mA·h/g以内时, 其极化电压仅为0.9 V; 当以50 mA/g电流密度进行恒容(500 mA·h/g)充放电循环时, 在极化电压低于1.1 V时, 仍能稳定循环12周. 复合材料电催化机理的研究结果表明, 三维网状结构不仅提供了O2和Li+的传输通道, 更增加了放电产物Li2O2的储存场所. 金属钌纳米粒子的负载既增加了复合材料的反应活性位点, 又促进了放电产物Li2O2的分解.  相似文献   

19.
采用阳极氧化铝(AAO)模板电化学沉积方法, 合成了1种新型吡咯-(3,4-乙烯二氧噻吩)(PE)共聚物纳米线阵列薄膜, 作为锂离子电池电极材料, 其表现出较高的比容量(1426.1 mA·h/g, 充放电电流密度为100 mA/g)和很好的循环稳定性(在充放电循环300圈之后, 比容量仍然保持在1400 mA·h/g以上). 这种多组分共聚物纳米线阵列有可能成为下一代长寿命、 高性能的锂离子电池电极材料而被广泛开发.  相似文献   

20.
采用水热法制备了一种含铝金属有机骨架材料, 其在高温下发生炭化得到多孔碳, 最后与硫复合制得锂硫电池正极材料. XRD图谱显示在高温炭化时多孔碳样品出现了部分石墨化. N2等温吸附-脱附测试分析显示合成的多孔碳材料含有微孔和介孔结构. 对不同载硫量的锂硫电池进行了充放电性能测试, 结果显示S质量分数为46.3%的样品在0.01 C倍率下首次放电容量达到1272 mA·h/g; 在0.1 C倍率下首次放电容量为934 mA·h/g, 循环性能良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号